
Wayback: A User-level Versioning File System for Linux

Brian Cornell Peter A. Dinda Fabián E. Bustamante
Computer Science Department, Northwestern University

{techie,pdinda,fabianb}@northwestern.edu

Abstract

In a typical file system, only the current version of a file (or directory) is available. In Wayback, a user can also ac-
cess any previous version, all the way back to the file’s creation time. Versioning is done automatically at the write
level: each write to the file creates a new version. Wayback implements versioning using an undo log structure, ex-
ploiting the massive space available on modern disks to provide its very useful functionality. Wayback is a user-
level file system built on the FUSE framework that relies on an underlying file system for access to the disk. In ad-
dition to simplifying Wayback, this also allows it to extend any existing file system with versioning: after being
mounted, the file system can be mounted a second time with versioning. We describe the implementation of Way-
back, and evaluate its performance using several benchmarks.

1 Introduction

A user of a modern operating system such as Linux ex-
periences a very simple file system model. In particu-
lar, the file system only provides access to the current
versions of his or her files and directories. The trou-
ble with this model is that the user’s progress in his
work is not monotonic – the user makes mistakes such
as discarding important text in a document, damaging
carefully tuned source code through misunderstanding,
or even accidentally deleting files and directories. Be-
yond mistakes, it is often helpful, especially in writing
code or papers to look at the history of changes to a
file. If the user could “go back in time” (using the
“wayback machine” from Ted Keys's classic cartoon
series “Peabody’s Improbable History,” for example),
she would be in a better position to recover from such
mistakes or understand how a file got to its current
state.

Of course, version control systems such as RCS [RCS]
and CVS [CVS] provide such functionality. However,
the user must first become familiar with these systems
and explicitly manage her files with them. In particu-
lar, the user must tell these systems when a new version
of the files is ready by explicitly committing them.
Hence, the user determines the granularity of versions,
and, since he must explicitly make them, they tend to
be large. Some tools such as EMACS include drivers
to automate this process. Some applications (e.g. Mi-
crosoft Word) provide their own internal versioned file
format. Here the versioning is usually done automati-
cally at the granularity of a whole editing session.

We believe that a better way to help the user revert to
earlier versions of her file is to automatically provide
versioning in the file system itself, and to provide it at a
fine granularity. To this end, we have developed the
Wayback versioning file system for Linux. With no
user interaction, Wayback records each write made to
each file or directory into a permanent undo log
[UNDO]. The undo log can then be unwound in re-
verse order (prompted by a user-level tool) to rollback
to or extract any previous version of a file. Wayback is
implemented as a user-level file system using the FUSE
kernel module [FUSE]. It operates on top of an exist-
ing, non-versioned file system, adding versioning func-
tionality.

Versioning file systems have been around for quite
some time. It was already provided by some early file
systems such as Cedar File System [CEDAR] and 3-
DFS [3DFS]. The VMS operating system from DEC in-
troduced versioning to a broad range of users. The
VMS file system created a new version of a file on each
close [VMS]. Checkpointing is an alternative approach
to provide versioning: snapshots of the entire file sys-
tem are taken periodically and made available to the us-
er. Example of systems using checkpointing include
AFS [AFS], Petal [Petal] and Ext3Cow [Ext3Cow].
One limitation of checkpoint-based versioning is that
changes made between checkpoints cannot be undone.
The Elephant versioning file system was among the
first to recognize that versioning was a excellent way to
exploit the massive (and exponentially growing) disk
sizes that are available today [Elephant]. There has
since been an explosion of interest in versioning file
systems. Wayback does versioning at the level of
writes and hence is a comprehensive versioning file

system [CVFS]. Its ability to run on top of an existing
file system is similar to the concept of a stackable file
system such as Versionfs [VersionFS2]. Versionfs im-
plements some of the same functionality of Wayback
on Linux [VersionFS1], but there is no public release
available. As far as we are aware, Wayback is the first
public release (under the GPL) of a versioning file sys-
tem for Linux.

2 User's View Of The Wayback FS

Wayback FS requires a recent 2.4 or 2.6 Linux kernel,
gcc 2.95.2 or higher, and Perl 5. We have used kernel
versions as early as 2.4.7-10 (shipped with Red Hat
7.2). The FUSE user-level file system module is used
(versions 0.95 and up). The current Wayback distribu-
tion is shipped along with the FUSE source. Compila-
tion involves the typical make, make install routine.
The output includes:

• fuse.o: FUSE kernel module
• wayback: Wayback FS user-space server
• vutils.pl: command-line utility for manipulating

files.
• mount.wayback: easy mounting script

Four symbolic links to vutils.pl are also created to ex-
pose its basic functions:

• vstat: Describe a versioned file.
• vrevert: Revert a versioned file to an earlier ver-

sion.
• vextract: Extract a specific version of a file.
• vrm: Permanently remove a file.

To mount a Wayback file system, the underlying file
system is first mounted in the normal manner, then it is
remounted by starting a Wayback server:

$ wayback path-in-underlying-fs mount-path

A script named mount.wayback is included in the dis-
tribution that remounts paths nicely such that all users
can access the versioned files as they could the underly-
ing files. mount.wayback is executed with the same
options as wayback above.

After this, the user can access his files through mount-
path. Any change made will be logged and is re-
versible using vrevert. Old versions can also be copied
out using vextract. Even “rm” is logged and can be un-
done. To permanently remove a file, vrm is used. No-
tice that it is possible to mount the directory hierarchy

under any path as a new, versioned, file system. It is
also possible to continue to manipulate files in the orig-
inal path, but those changes will not be logged and are
not revertible.
Versions are tagged in two ways: by change number
(starting with one being the most recent change) and by
time stamp. The user most often uses the time stamp, it
being natural to revert or extract a file or directory as it
existed at a particular point in time.

3 Implementation
Wayback FS is implemented as a user-space server that
is called by the FUSE kernel module. In essence,
FUSE traps system calls and upcalls to the Wayback
server. The server writes an entry into the undo log for
the file or directory that reflects how to revert the ef-
fects of the call, and then executes the call on the un-
derlying file system. We opted for FUSE because of
familiarity with the tool. We could have alternatively
employed SFS [FiST].

3.1 Log Structure For Files

Each file for which versioning information exists has a
shadow undo log file, named by default “<filename>.
versionfs! version”. Each log record consists of:

• A time stamp,
• The offset at which data is being overwritten or

truncated,
• The size of the data that is being lost,
• Whether the file size is increasing due to writing

off the end of the file, and
• The data being lost, if any.

3.2 Logging File Operations

Wayback traps calls to write() and truncate() for files.
Every time write() is called on a file, versionfs reads
the portion of the file that the write call will overwrite
and records it in the log. The offset recorded is the off-
set in the file at which data is being written, the size is
either the number of bytes to the end of the file or the
number of bytes being written (whichever is smaller),
and the data is the size bytes at offset that are currently
in the file.

When truncate() is called on a file, the offset recorded is
the length to which the file is truncated, size is the num-
ber of bytes in the file after that point, and data is that
data that is being discarded due to truncation.

3.3 Log Structure For Directories

Every directory has a shadow undo log that we call the
directory catalog. The directory catalog logs when any
entry in the directory is created, removed, renamed, or
has its attributes change. The directory catalog has the
default name “<directory>/. versionfs! version”. Each
log record consists of:

• A time stamp,
• The operation being performed,
• The size of the data recorded for this operation,

and
• The data needed to undo the operation. The in-

terpretation of the data depends on the opera-
tion.

3.4 Logging Directory Operations

When mknod(), mkdir(), or creat() is called, a link is
created, or open() is called with the O_CREAT flag, the
directory catalog is updated with the create or mkdir
operation number and data consisting of the filename
that is being created.

When unlink() is called on a regular file, the file is first
truncated to zero length to preserve the contents of the
file before deletion. Next, the directory catalog is up-
dated with data consisting of the attributes of the file
(mode, owner, and times) and the filename that is being
deleted. For links, the destination is also recorded.

Calls to rmdir() in Wayback actually translate to calls
to rename(). Directories are never deleted because their
contents would be lost. Instead an identifier such as “.
versionfs! deleted” is added to the directory name. Sub-
sequently, and for user-initiated rename() calls, the di-
rectory catalog is updated with data consisting of the
old name of the file or directory, and the new name of
the file or directory.

When chmod(), chown(), or utime() is called, the direc-
tory catalog is updated with data consisting of the at-
tributes of the file and the filename for which attributes
are being changed.

4 Design Issues

We encountered several issues while designing and im-
plementing Wayback. The solutions we found and deci-
sions we made have defined what Wayback is now.

4.1 Kernel Versus User-level

The first major decision we had to make was whether
this file system should be implemented in the kernel as
its own file system, or using a user-level module. The
trade-offs are in speed, ease of implementation, and
features. A kernel module would undoubtedly be much
faster because the user-level overhead would be avoid-
ed. However, it could limit compatibility to certain ker-
nel versions, and it would preclude adding versioning
to existing file systems. It would also be much harder to
implement a kernel module.

The main factor in our decision to make a user-level
file system had to do with the features we could easily
implement. We considered writing Wayback as a ker-
nel-level extension to ext3. This would probably have
been faster, but it would have been limited to ext3 file
systems on normal block devices. Implementing Way-
back as a user-level file system would make it slower,
but would let us remount any file system with version-
ing.

4.2 Choice of Undo Logging

Wayback logs changes as undo records. We recover
previous versions by applying these records in reverse
order until the appropriate version is reached. This is
straightforward, but it has a downside: while reverting
to newer versions is very fast, reverting to very old ver-
sions can take some time. One alternative is a redo
log, in which modifications themselves are written as
log records. Recovering an old version means applying
the records in forward order until the appropriate ver-
sion is reached. This has the advantage of allowing
very old versions to be recovered very quickly, but
newer versions are slow. A third possibility is an
undo/redo log, which contains both undo and redo
records, allowing us to move backward and forward
easily. Each logging technique can be combined with
periodic checkpointing, providing snapshots of the
whole file state from which to move forward or back-
ward using the log.

We chose simple undo logging for Wayback because
we felt that for our use cases – reverting mistakes made
in editing programs and documents – we would typical-
ly have only to move backward by a small number of
versions. In light of other applications we would like
to support (see Conclusion), we are reconsidering our
logging model.

4.3 Use of FUSE

Once we had decided on a user-level approach, we next
considered how to interact with the kernel. At the time
we started development, FUSE was still in its early
stages (we started with FUSE 0.95), but being able to
avoid kernel development altogether was very tempting
to us since we wanted to concentrate on the versioning
mechanisms. The FUSE kernel module provided us
with the level of access we needed on a modern Linux
kernel. FUSE proved to be relatively stable and easy to
use.

Early versions of FUSE did not provide an upcall for
the close() system call. This lack would have made it
impossible to create new versions on close, as in VMS.
Fortunately, we had determined to do write-level ver-
sioning. However, it still indirectly affected Wayback's
design. In particular, without close() calls, managing
file descriptors for log files is made unnecessarily diffi-
cult.

4.4 Path Redirection

After deciding to use FUSE, we quickly came upon an-
other issue. FUSE is designed only to provide a desti-
nation path for the file system, and not a source path to
mount there. The examples for FUSE either remount
an entire directory structure beginning in the root direc-
tory, or provide their own root from a different source
such as memory.

We decided that we wanted to have redirection from
any path, not just the root directory, so we had to im-
plement a work-around. Wayback takes different com-
mand-line arguments from other FUSE file systems,
and then modifies those arguments before passing them
on to FUSE. We then use the information from those
arguments to modify every path given to Wayback
from FUSE, redirecting it to the “real” path.

5 Performance Evaluation

A variety of performance tests were run on Wayback
FS to evaluate its performance. These tests include
Bonnie [Bonnie], which performs various operations on
a very large file; the Andrew Benchmark [Andrew],
which simulates the operation of normal file systems;
and a test that compares using Wayback FS to using
manual checkins with RCS.

These tests were all run on three test systems:

• Machine A: AMD Athalon XP 2400+ with 512
MB of RAM using an internal 2.5 inch notebook
hard drive.

• Machine B: Intel Pentium 4 2.2 GHz with 512
MB of RAM using an external USB 1.1 disk
(1.5 MBps).

• Machine C: Intel Celeron 500 MHz with 128
MB of RAM using an internal 2.5 inch notebook
hard drive.

All of the tests were run under Linux kernel 2.4.20 or
2.4.22.

For comparison, another file system was built on top of
FUSE before tests were run. This file system simply
redirects requests from the mounted file system through
to the underlying file system, acting as a pass-through.
This file system is used to identify the performance hit
taken solely by the FUSE system, and isolate the per-
formance loss from versioning. We consider the fol-
lowing file systems:

• ext3: the out-of-box ext3 file system

• ext3+fuse: ext3 run through our pass-through
FUSE file system

• ext3+ver: Wayback FS running on top of ext3

These configurations were used for our Bonnie and An-
drew tests. In comparing to RCS, we compared
“ext3+ver” to “ext3”, where the files in question were
periodically committed using RCS.

We did not run any tests on the performance of revert-
ing files, because it is not an everyday occurrence and
shouldn't matter as much as reading and writing perfor-
mance. Reverting or extracting a recent state from a file
typically takes at the most seconds if not less than a
second. Disk space usage does increase when reverting
files depending on the size of the reversion, because
Wayback does not remove the reverted entries from the
log. Rather it runs them backwards on the file, creating
more entries in the log.

5.1 Bonnie

Bonnie was originally created by Tim Bray to identify
bottlenecks in file systems. It does so by creating a very

large file, large enough to require disk access rather
than caching, and reading from/writing to that file as
fast as it can.

5.1.1 Bonnie Implementation

Bonnie is implemented as a single C program. The pro-
gram takes arguments for the size of the file it will use
and the path where it will be stored. Bonnie then cre-
ates the large file and performs many sequential opera-
tions on it, including writing character by character,
writing block by block, rewriting, reading character by
character, reading block by block, and seeking. For
this test, Bonnie was run with a file size of 1 GB.

5.1.2 Bonnie Results

Figures 1-3 show the performance of the different Bon-
nie phases on the three machines. For each phase and
machine, we compare ext3, ext3 via our pass-through
FUSE file system, and ext3 with Wayback versioning.
The performance metric is in KB/s as measured by
Bonnie. The point is to measure how much perfor-
mance is lost by using Wayback and how it breaks
down into FUSE overheads and the actual costs of
Wayback. Figure 4 shows the CPU costs, in terms of
percentage of CPU used as measured by Bonnie.

It is important to point out that in some cases layering
ext3 below FUSE actually increases its performance.
We expect that this is due to buffering effects as there
is now an additional process which can buffer. Addi-
tionally, the overheads shown in Figure 4 are slightly
misleading. Bonnie is measuring the system and user

time it uses, but does not count the time spent in the
Wayback server on its behalf.

For block writes in Wayback, we see performance im-
pacts in the range of -2% to -40% compared to un-Figure 1. Bonnie Performance on Machine A

Write
per
charac-

Write
per
block

Rewrite
K/sec

Read
per
charac-

Read
per
block

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Machine A: Bonnie Performance

ext3
ext3+fus
ext3+ver

Performance Metric

K
B

/s

Figure 2. Bonnie Performance on Machine B

Write
per
charac-

Write
per
block

Rewrite
K/sec

Read
per
charac -

Read
per
block

0

100

200

300

400

500
600

700

800

900

1000

1100

Machine B: Bonnie Performance

ext3
ext3+fus
ext3+ver

Performance Metric

KB
/s

Figure 3. Bonnie Performance on Machine C

Write
per
charac-

Write
per
block

Rewrite
K/sec

Read
per
charac-

Read
per
block

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Machine C: Bonnie Performance

ext3
ext3+fus
ext3+ver

Performance Metric

KB
/s

Figure 4. Bonnie Overheads

Machine A Machine B Machine C
0

10

20

30

40

50

60

70

80

90

100

Bonnie Overheads

ext3
ext3+fus
ext3+ver

Machine

%
 C

PU

adorned ext3, depending on the speed of the disk and
the machine. For block reads, the performance impact
is +5% to -32%. Character writes are impacted -3% to
-50%, while the character read impact is -10% to -30%.
In re-writing, where would expect to see the maximum
impact, the range is -30% to -70%.

The largest impact on write speed is on machines with
fast disks, particularly those that also have slow proces-
sors. The largest impact on rewrite speed is on ma-
chines with slow disks, which is to be expected as
rewrites will include additional data to be written to the
logs. Read speed is maximally affected on slow ma-
chines with fast disks. In many cases, a large portion,
often the majority of the performance impact is due to
FUSE rather than versioning.

5.2 Andrew Benchmark

The Andrew Benchmark, although quite old, is com-
monly used to measure the performance of file systems.
It performs operations similar to those performed every
day on file systems, including making directories,
copying files, stating and reading files, and compiling a
program.

5.2.1 Andrew Implementation

The original Andrew Benchmark was written on and
designed for Sun computers. It consists of a makefile
that executes operations in five phases, ending in the
compilation of a program. The program used in the
benchmark will only compile on Sun systems however.
The Andrew benchmark also only runs each phase
once, and does not delete the files it creates.

Because of these limitations, we rewrote the Andrew
Benchmark in Perl. The program runs the same phases
as the original Andrew Benchmark, except that it can
run them with any set of files. It can also run the test
multiple times and print a summary.

The phases of the Andrew Benchmark are designed to
emulate everyday use of a file system. The phases are
all done using the source directory of a program, and
include:

• Phase 1: Create five copies of the directory structure
in the source tree.

• Phase 2: Copy all of the files from the source tree
into the first set of directories created.

• Phase 3: Stats each file using `ls -l`.

• Phase 4: Read each file using grep and wc.

• Phase 5: Compile the source in the test tree.

The source that we used is that of the window manager
ION. Each phase was executed 1000 times to get accu-
rate results. As before, we ran the benchmark three
times on each time, once with the ext3 file system, once
with the pass-through file system on ext3, and once
with Wayback FS on ext3.

5.2.2 Andrew Results

Figures 5-7 compare the performance of the different
file systems for each phase on each machine. The per-
formance metric is the average wall-clock time to run
each phase. Phase 5 (Compilation) times have been di-
vided by 20 to fit on the graphs.

There are several takeaway points from these graphs.
First, the largest performance impact of Wayback is on
directory creation (Phase 1). Second, Wayback in-
creases the time to run the write-intensive copy phase
(Phase 2) by between a factor of two and a factor of
four. The largest impact is, not surprisingly, on a ma-
chine with a slow disk. Wayback has negligible im-
pact on the stat phase (Phase 3), except on very slow
machines. The impact on reads (Phase 4) is relatively
low (30%) regardless of the machine or disk. Finally,

Figure 5. Andrew Performance on Machine A

Phase
1

Phase
2

Phase
3

Phase
4

Phase
5 / 20

0

100

200

300

400

500

600

700

800

900

1000

1100

Machine A: Andrew Performance

Ext3
FUSE
Wayback

Phase

Ti
m

e
(m

s)

for compilation (Phase 5), the impact of Wayback is
very small (15%) on all three machines.

That the performance impact on compilation is
marginal suggests that Wayback could be used very ef-
fectively in the edit-compile-debug loop of program de-
velopment or document preparation with tools such as
LaTeX.

5.3 RCS Comparison

In order to test the effectiveness of a versioning file
system, it is necessary not only to compare it to other
file systems, but to compare it to other methods of ver-
sioning. For this reason we have constructed a test that
compares different operations on Wayback FS with
similar operations using RCS on an ext3 file system.

5.3.1 RCS Implementation

The RCS comparison is implemented as a Perl script
that runs through a variety of tests multiple times on
both an RCS system and Wayback. The test records the
time taken in each case as well as the disk space used.

The RCS comparison runs three modes of testing and
produces separate output for the three modes:

• Mode 1: Random seeks within a binary file fol-
lowed by writing a specified amount of random da-
ta. This is designed to emulate normal binary file
use. We used 1 MB binary files and 1 KB writes.

• Mode 2: Read an entire binary file into memory,
change a specific number of randomly chosen loca-
tions with a specified amount of random data, then
write the file back to disk. This is similar to the op-
eration of some databases. For this test we used 1
MB files, 1 KB writes, and randomly between 5 and
20 writes per iteration.

• Mode 3: Randomly choose a line in a text file,
change a specified number of lines randomly using
English words, truncate the file and write every-
thing after the point at which it began changing
lines. This test uses a dictionary file to construct
files. This is designed to emulate text editing, in-
cluding changing configuration files and writing
code. For this test we used files of 2000 lines, 20
words maximum per line, and changed randomly
between 1 and 5 lines per iteration.

Each mode in this test was run for 100 iterations with a
file, and the whole ensemble was repeated 10 times
with different files. Wayback logged every operation
as normal. For RCS, we committed the file periodical-
ly, varying the period.

5.3.2 RCS Results

Figures 8-10 show our results. As before, each Figure
corresponds to a particular machine. Three curves, one
for each mode, are included. Times for the third mode
have been multiplied by 10 to fit on the graphs. The
vertical axis is the time required to run the mode, while
the horizontal axis is the test set. The left-most test set,
marked “Version” is for Wayback. The remaining test
sets are for RCS with varying period. For example,
“RCS 1” corresponds to RCS commits done after every
operation, which is equivalent to what Wayback is do-
ing, while “RCS 6” corresponds to RCS commits done

Figure 6. Andrew Performance on Machine B

Figure 7. Andrew Performance on Machine C

Phase
1

Phase
2

Phase
3

Phase
4

Phase
5 / 20

0

250

500

750

1000

1250

1500

1750

2000

2250

Machine B: Andrew Performance

Ext3
FUSE
Wayback

Phase

Ti
m

e
(m

s)

Phase
1

Phase
2

Phase
3

Phase
4

Phase
5 / 20

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

Machine C: Andrew Performance

Ext3
FUSE
Wayback

Phase

Ti
m

e
(m

s)

after every 6th operation. As the period increases, we
amortize more and more of the overhead of using RCS
and get closer to the performance of Wayback.

It is clearly the case that Wayback performs far better
than RCS at comprehensive versioning. An interesting
trend is that for slower processors the difference be-
tween Wayback and RCS is greater, and for slower
disks RCS nearly catches up to Wayback.

The results show that except in the case of a very slow
disk, Wayback performs better with single binary
writes (Mode 1) even if RCS is used with a period of
10. On an average system, Wayback performs about as
well as using RCS every other time when writing the

whole binary file (Mode 2). Using Wayback with text
on an average system is similar in performance to using
RCS about once every four changes.

In terms of disk space use, the results are quite differ-
ent. For the single binary writes (Mode 1), Wayback
uses much less disk space than RCS. For writing the
whole binary file (Mode 2), Wayback uses 25 to 30
times as much space as RCS. For text changes (Mode
3) Wayback uses about 20 times as much space as
RCS. These results are summarized in Table 1; sizes
are shown in bytes and are the average from 10 runs.
Disk space is not dependent on the test system, so re-
sults are only shown from Machine A.

File Type Mode 1 Mode 2 Mode 3

Versioned 1157456.4 106347428.0 2182218.0

RCS Period 1 2242325.4 3856521.8 101062.2

RCS Period 2 2237020.7 3779180.4 96134.2

RCS Period 3 2233854.1 3731427.8 94336.4

RCS Period 4 2234384.4 3719578.2 93597.1

RCS Period 5 2233716.4 3700853.4 93095.3

RCS Period 6 2227924.3 3621657.1 92375.5

RCS Period 7 2230300.3 3635107.2 92321.2

RCS Period 8 2227552.2 3590195.5 91960.0

RCS Period 9 2231124.4 3625548.8 92060.8

RCS Period 10 2232218.7 3629717.4 92045.2

Table 1. RCS Storage Costs

Figure 8. RCS Performance on Machine A

Figure 9. RCS Performance on Machine B

Figure 10. RCS Performance on Machine C

Ver
sio
ne

RC
S 1

RC
S 2

RC
S 3

RC
S 4

RC
S 5

RC
S 6

RC
S 7

RC
S 8

RC
S 9

RC
S
10

0

5

10

15

20

25

30

35

40

45

50

Machine A: RCS Performance

Mode 1
Mode 2
Mode 3 x 10

Set

Ti
m

e
(s

)

Ve
rsi
on

RC
S 1

RC
S 2

RC
S 3

RC
S 4

RC
S 5

RC
S 6

RC
S 7

RC
S 8

RC
S 9

RC
S
10

0
10
20
30
40
50
60
70
80
90

100
110

Machine C: RCS Performance

Mode 1
Mode 2
Mode 3 x 10

Set

Ti
m

e
(s

)

Ver
sio
ne

RC
S 1

RC
S 2

RC
S 3

RC
S 4

RC
S 5

RC
S 6

RC
S 7

RC
S 8

RC
S 9

RC
S
10

0
5

10
15
20
25
30
35
40
45
50
55
60

Machine B: RCS Performance

Mode 1
Mode 2
Mode 3 x 10

Set

Ti
m

e
(s

)

6 Conclusions

We have described the design and implementation of
Wayback, a comprehensive versioning file system for
Linux. Wayback is implemented as a user-level file
system using FUSE. When running on top of the stan-
dard Linux ext3 file system, its overhead is quite low
for common modes of use.

We are considering several extensions and applications
for Wayback. First, if the underlying file system does
not support transactional writes, they could be forced
by Wayback through sync operations. Second, it ap-
pears that a file system that never garbage collects its
undo log would naturally perform very well when run-
ning on top of, or incorporated into a log-structured file
system [Log]. Third, if Wayback used an undo/redo
log, it would be straightforward to go forward in time
as well as backward. Fourth, hierarchical version
numbers and undo/redo logging would permit branch-
ing. Of course, it is not clear whether it would be any
less painful to handle merging in the file system than
in, say, CVS. Finally, given undo/redo logs and ver-
sion numbers, keeping large files synchronized among
multiple sites would be simplified – we would have
only to transfer the redo log records that the remote log
did not already have and then redo them. For situations
where a single large file migrates among multiple sites
but is accessed at one site at a time – virtual machine
image migration for example – such synchronization
might prove to provide dramatically faster migration
times.

Availability

Wayback is publically available (under the GPL) from
http://sourceforge.net/projects/wayback.

References

[3DFS] D.G. Korn and E. Krell. The 3-D File System.
In Proc. of the USENIX Summer Conference, pp. 147-
156, 1989.

[AFS] J. J. Kistler and M. Satyanarayanan. Disconnect-
ed operations in the Coda file system. In Proc. of the
13th ACM Symposium on Operating Systems Principles.
October, 1991.

[Andrew] J. Howard, et al, Scale and Performance in a
Distributed File System, Transactions on Computer
Systems, Volume 6, February 1988.

[Bonnie] T. Bray, The Bonnie Benchmark, http://www.-
textuality.com/bonnie

[CEDAR] D. K. Gifford, R.M. Needham, and M.D.
Schroeder. The Cedar File System. Communication of
the ACM, 31(3):288-298, 1988.

[CVS] B. Berliner and J. Polk. Concurrent Versions
Systems (CVS). http://www.cvshome.org .2001.

[CVFS] C. A. Soules, G.R. Goodson, J. D. Strunk and
G. R. Ganger. Metadata Efficiency in a Comprehensive
Versioning File System. In Proc. of the 2nd USENIX
Conference on File and Storage Technologies, 2003

[Elephant] D. S. Santry, M.J. Feeley, N.C. Hutchinson,
A.C. Veitch, R.W. Carton and J. Ofir. Deciding When
to Forget in the Elephant File System. In Proc. of the
17th ACM Symposium on Operating System Principles.
December, 1999.

[Ext3Cow] Z. N. Peterson and R. C. Burns. Ext3cow:
The design, Implementation, and Analysis of Metadata
for a Time-Shifting File System. Tech. Report HSSL-
2003-03, Computer Science Department, The John
Hopkins University, 2003.

[FiST] E. Zadok and J. Nieh. FiST: A Language for
Stackable File Systems. In Proc. of the Annual
USENIX Technical Conference. June 2000.

[FUSE] M. Szeredi. Filesystem in USEr space,.
http://sourceforge.net/projects/avf, 2003.

[Log] M. Rosenblum and J. Ousterhout, The Design
and Implementation of a Log-Structured File System,
ACM Transactions on Computer Systems, 10(1), 1992,
26-52.

[Petal] E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. In Proc. of the 7th Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems. 1996.

[RCS] F. Tichy, Software Development Control Based
On System Structure Description, PhD. Thesis,
Carnegie Mellon University, 1980.

[UNDO] H. Garcia-Molina, et al, Database Systems:
The Complete Book, Chapter 17, Prentice Hall, 2002.

[VersionFS1] Muniswamy-Reddy, et al, A Versatile
and User-Oriented Versioning File System, In Proc. Of
the 3rd USENIX Conference on File Storage and Tech-
nologies, March, 2004.

[VersionFS2] A Stackable Versioning File System,
http://www.fsl.cs.sunysb.edu/project-versionfs.html

[VMS] K. McCoy, VMS File System Internals, Digital
Press, 1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

