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Abstract

Most parallel machines, such as clusters, are space-
shared in order to isolate batch parallel applications from
each other and optimize their performance. However, this
leads to low utilization or potentially long waiting times. We
propose a self-adaptive approach to time-sharing such ma-
chines that provides isolation and allows the execution rate
of an application to be tightly controlled by the administra-
tor. Our approach combines a periodic real-time scheduler
on each node with a global feedback-based control system
that governs the local schedulers. We have developed an on-
line system that implements our approach. The system takes
as input a target execution rate for each application, and au-
tomatically and continuously adjusts the applications’ real-
time schedules to achieve those rates with proportional CPU
utilization. Target rates can be dynamically adjusted. Appli-
cations are performance-isolated from each other and from
other work that is not using our system. We present an ex-
tensive evaluation that shows that the system remains stable
with low response times, and that our focus on CPU isola-
tion and control does not come at the significant expense of
network I/O, disk I/O, or memory isolation.

1 Introduction

Tightly-coupled computing resources such as clusters are
typically used to run batch parallel workloads. An appli-
cation in such a workload is typically communication in-
tensive, executing synchronizing collective communication.
The Bulk Synchronous Parallel (BSP) model [25] is com-
monly used to understand many of these applications. In the
BSP model, application execution alternates between phases
of local computation and phases of global collective commu-
nication. Because the communication is global, the threads
of execution on different nodes must be carefully scheduled
if the machine is time-shared. If a thread on one node is slow
or blocked due to some other thread unrelated to the applica-
tion, all of the application’s threads stall.
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To avoid stalls and provide predictable performance for
users, almost all tightly-coupled computing resources today
are space-shared. In space-sharing [24], each application
is given a partition of the available nodes, and on its par-
tition, it is the only application running, thus avoiding the
problem altogether by providing complete performance iso-
lation between running applications. Space-sharing intro-
duces several problems, however. Most obviously, it lim-
its the utilization of the machine because the CPUs of the
nodes are idle when communication or I/O is occurring.
Space-sharing also makes it likely that applications that re-
quire many nodes will be stuck in the queue for a long
time and, when running, block many applications that re-
quire small numbers of nodes. Finally, space-sharing per-
mits a provider to control the response time or execution rate
of a parallel job at only a very course granularity. Though
it can be argued theoretically that applications can be al-
ways built such that computation and I/O overlap all the time,
thus preventing stalls, practically speaking, this is rarely the
case. We propose a new self-adaptive approach to time-
sharing parallel applications on tightly-coupled comput-
ing resources like clusters, performance-targetted feedback-
controlled real-time scheduling. The goals of our technique
are to provide
� performance isolation within a time-sharing framework that

permits multiple applications to share a node, and
� performance control that allows the administrator to finely

control the execution rate of each application while keeping
its resource utilization automatically proportional to
execution rate.

Conversely, the administrator can set a target resource utiliza-
tion for each application and have commensurate application
execution rates follow.

In performance-targetted feedback-controlled real-time
scheduling, each node has a periodic real-time sched-
uler. The local application thread is scheduled with a
������� � ������ constraint, meaning that it executes ����� sec-
onds every ������ . Notice that ������������ is the utiliza-
tion of the application on the node. Our implementation uses
our previously described [11] and publicly available VSched
tool. VSched is a user-level periodic real-time scheduler for
Linux that we originally developed to explore scheduling in-
teractive and batch workloads together. Section 3 provides
an overview.

Once an administrator has set a target execution rate for
an application, a global controller determines the appropriate



constraint for each of the application’s threads of execution
and then contacts each corresponding local scheduler to set
it. The controller’s input is the desired application execution
rate, given as a percentage of its maximum rate on the system
(i.e., as if it were on a space-shared system). The application
or its agent periodically feeds back to the controller its cur-
rent execution rate. The controller automatically adjusts the
local schedulers’ constraints based on the error between the
desired and actual execution rate, with the added constraint
that utilization must be proportional to the target execution
rate. In the common case, the only communication in the
system is the feedback of the current execution rate of the
application to the global controller, and synchronization of
the local schedulers through the controller is very infrequent.
Section 4 describes the global controller in detail.

It is important to point out that our system schedules the
CPU of a node, not its physical memory, communication
hardware, or local disk I/O. Nonetheless, in practice, we can
achieve quite good performance isolation and control even
for applications making significant use of these other re-
sources, as we show in our detailed evaluation (Section 5).
Mechanisms for physical memory isolation in current OSes
and VMMs are well understood and can be applied in con-
cert with our techniques. As long as the combined work-
ing set size of the applications executing on the node does
not exceed the physical memory of the machine, the existing
mechanisms suffice. Communication has significant compu-
tational costs, thus, by throttling the CPU, we also throttle it.
The interaction of our system and local disk I/O is more com-
plex. Even so, we can control applications with considerable
disk I/O.

The primary contributions of our work to the state of the
art are the following:

� We have described, implemented, and evaluated a new
approach to time-sharing parallel applications with
performance isolation. The approach is based on periodic
real-time scheduling of the nodes combined with global
control of the real-time constraints.

� We have demonstrated that this approach also provides a
simple way to control the execution rate of applications while
maintaining efficiency.

2 Related work

Our work ties to gang scheduling, implicit co-scheduling,
real-time schedulers, and feedback control real-time schedul-
ing. As far as we aware, we are the first to develop real-
time techniques for scheduling parallel applications that pro-
vide performance isolation and control. We also differ from
these areas in that we show how external control of re-
source use (by a cluster administrator, for example) can be
achieved while maintaining commensurate application exe-
cution rates. That is, we can reconcile administrator and user
concerns.

The goal of gang scheduling [19, 9] is to “fix” the blocking
problems produced by blindly using time-sharing local node
schedulers. The core idea is to make fine-grain scheduling
decisions collectively over the whole cluster. For example,

one might have all of an application’s threads be scheduled
at identical times on the different nodes, thus giving many of
the benefits of space-sharing, while still permitting multiple
applications to execute together to drive up utilization, and
thus allowing jobs into the system faster. In essence, this
provides the performance isolation we seek, while perfor-
mance control depends on scheduler model. However, gang
scheduling has significant costs in terms of the communica-
tion necessary to keep the node schedulers synchronized, a
problem that is exacerbated by finer grain parallelism and
higher latency communication [10]. In addition, the code to
simultaneously schedule all tasks of each gang can be quite
complex, requiring elaborate bookkeeping and global system
knowledge [23].

Implicit co-scheduling [1] attempts to achieve many of the
benefits of gang scheduling without scheduler-specific com-
munication. The basic idea is to use communication irregu-
larities, such as blocked sends or receives, to infer the likely
state of the remote, uncoupled scheduler, and then adjust the
local scheduler’s policies to compensate. This is quite a pow-
erful idea, but it does have weaknesses. In addition to the
complexity inherent in inference and adapting the local com-
munication schedule, the approach also doesn’t really pro-
vide a straightforward way to control effective application
execution rate, response time, or resource usage.

The feedback control real-time scheduling project at the
University of Virginia [16, 21, 15, 17] had a direct influence
on our thinking. In that work, concepts from feedback con-
trol theory were used to develop resource scheduling algo-
rithms to give quality of service guarantees in unpredictable
environments to applications such as online trading, agile
manufacturing, and web servers. In contrast, we are using
concepts from feedback control theory to manage a tightly
controlled environment, targeting parallel applications with
collective communication.

Feedback-based control was also used to provide CPU
reservations to application threads running on a single ma-
chine based on measurements of their progress [22], for con-
trolling coarse-grained CPU utilization in a simulated vir-
tual server [27], for dynamic database provisioning for web
servers [2], and to enforce web server CPU entitlements to
control response time [14].

There are a wide range of implementations of periodic
real-time schedulers, for example [3, 18], including numer-
ous kernel extensions for Linux, for example [8, 20].

3 Local scheduler

In the periodic real-time model, a task is run for �����

seconds every ������ seconds. Using earliest deadline first
(EDF) schedulability analysis [12], the scheduler can deter-
mine whether some set of ������� � ������ constraints can be
met. The scheduler then uses dynamic priority preemptive
scheduling with the deadlines of admitted tasks as priorities.

VSched is a user-level implementation of this approach
for Linux that offers soft real-time guarantees. It runs as
a Linux process that schedules other Linux processes. Be-
cause the Linux kernel does not have priority inheritance
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Figure 1. Structure of global control.

mechanisms, nor known bounded interrupt service times, it
is impossible for a tool like VSched to provide hard real-time
guarantees to ordinary processes. Nonetheless, as we show in
an earlier paper [11], for a wide range of periods and slices,
and under even fairly high utilization, VSched almost always
meets the deadlines of its tasks, and when it misses, the miss
time is typically very small. VSched supports ������� � ������
constraints ranging from the low hundreds of microseconds
(if certain kernel features are available) to days. Using this
range, the needs of various classes of applications can be de-
scribed and accommodated. VSched allows us to change a
task’s constraints within about a millisecond.

VSched is a client/server system. The VSched server is a
daemon running on Linux that spawns the scheduling core,
which executes the scheduling scheme described above. The
VSched client communicates with the server over an en-
crypted TCP connection. In this work, the client is driven
by the global controller and we schedule individual Linux
processes.

The performance of VSched has been evaluated on several
different platforms. It can achieve very low deadline miss
rates up to quite high utilizations and quite fine resolutions.
VSched can use over 90% of the CPU even on relatively
slow hardware and older kernels (Intel R� Pentium R� III, 2.4
kernel) and can use over 98% of the CPU on more modern
configurations (Intel R� Pentium R� 4, 2.6 kernel). The mech-
anisms of VSched its evaluation and related work are de-
scribed in much more detail in an earlier paper [11] and the
software itself is publicly available.

4 Global controller

The control system consists of a centralized feedback con-
troller and multiple host nodes, each running a local copy
of VSched, as shown in Figure 1. A VSched daemon is re-
sponsible for scheduling the local thread(s) of the applica-
tion(s) under the yoke of the controller. The controller sets
������� � ������ constraints using the mechanisms described
in Section 3. Currently, the same constraint is used for each
VSched. One thread of the application, or some other agent,
periodically communicates with the controller using non-
blocking communication.

��� ������

The maximum application execution rate on the system
in application-defined units is ����. The set point of the
controller is supplied by the user or the system administrator

through a command-line interface that sends a message to
the controller. The set point is ������� and is a percentage of
����. The system is also defined by its threshold for error,
�, which is given as percentage points. The inputs ������ and
������� specify the smallest amounts by which the slice and
period can be changed. The inputs 	�
����� and 	�
������

define the smallest slice and period that VSched can achieve
on the hardware.

The current utilization of the application is defined in
terms of its scheduled period and slice, � � ������������ .
The user requires that the utilization be proportional to the
target rate, that is, that ������� � � � � � ������� � �.

The feedback input ������	� comes from the parallel ap-
plication we are scheduling and represents its current execu-
tion rate as a percentage of ����. To minimize the modi-
fication of the application and the communication overhead,
our approach only requires high-level knowledge about the
application’s control flow and only a few extra lines of code.

��	 
�����
 �
�������

The control algorithm (or simply the algorithm) is respon-
sible for choosing a ������� � ������ constraint to achieve the
following goals

1. The error is within threshold: �������� � ������� � �, and

2. That the schedule is efficient: � � ������� � �.

The algorithm is based on the intuition and observation that
application performance will vary depending on which of the
many possible ������� � ������ schedules corresponding to a
given utilization � we choose, and the best choice will be
application dependent and vary with time. For example, a
finer grain schedule (e.g. (20ms, 10ms)) may result in better
application performance than coarser grain schedules (e.g.
(200ms, 100ms)). At any point in time, there may be multiple
“best” schedules.

The control algorithm attempts to automatically and dy-
namically achieve goals 1 and 2 in the above, maintaining a
particular execution rate ������� specified by the user while
keeping utilization proportional to the target rate.

We define the error as

� � ������	� � ��������

At startup, the algorithm is given an initial rate �������. It
chooses a ������� � ������ constraint such that � � �������
and ������ is set to a relatively large value such as 200 ms.
The algorithm is a simple linear search for the largest ������
that satisfies our requirements.

When the application reports a new current rate measure-
ment ������	� and/or the user specifies a change in the target
rate �������, � is recomputed, followed by:

� If ��� � � decrease ������ by ������� and decrease ����� by
������ such that ������������ � � � �������. If
������ � 	�
���	
� then we reset ������ to the same value
as used at the beginning and again set ����� such that
� � �������.

� If ��� � � do nothing.



It should be noticed that the algorithm always maintains the
target utilization and searches the ������� � ������ space from
larger to smaller granularity, subject to the utilization con-
straint. The linear search is, in part, done because multiple
appropriate schedules may exist. We do not preclude the use
of algorithms that walk the space faster, but we have found
our current algorithm to be effective.

5 Evaluation

In presenting our evaluation, we begin by explaining the
experimental framework. Then we show the range of con-
trol that the scheduling system has made available. This is
followed by an examination of using the algorithm described
above to prevent the inevitable drift associated with simply
using a local real-time scheduler. Next, we examine the per-
formance of the algorithm in a dynamic environment, show-
ing their reaction to changing requirements. We then illus-
trate how the system remains impervious to external load de-
spite the feedback. Next, we show how the system scales as
it controls increasing numbers of parallel applications. Fi-
nally, we examine the effects of local disk I/O and memory
contention.

��� �����������
 ���������

As mentioned previously, Bulk Synchronous Parallel
(BSP [6]) model is used to characterize many of the batch
parallel workloads that run in tightly coupled computing re-
sources such as clusters. In most of our evaluations we
used a synthetic BSP benchmark, called Patterns, written for
PVM [5]. Patterns is described in more detail in a previ-
ous paper [7], but the salient points are that it can execute
any BSP communication pattern and run with different com-
pute/communicate (comp/comm) ratios and granularities. In
general, we configure Patterns to run with an all-to-all com-
munication pattern on four nodes of our IBM e1350 cluster
(Intel R� Xeon R� 2.0 GHz, 1.5 GB RAM, Gigabit Ethernet
interconnect, Linux 2.4.20). Each node runs VSched, and a
separate node is used to run the controller. Note that all of
our results involve CPU and network I/O.

We also evaluated the system using an NAS (NASA Ad-
vanced Supercomputing) benchmark. In particular, we use
the PVM implementation of the IS (Integer Sort) benchmark
developed by White et al. [26]. It performs a large integer
sort, sorting keys in parallel as seen in large scale computa-
tional fluid dynamic (CFD) applications. IS combines integer
computation speed and communication with, unlike Patterns,
different nodes doing different amounts of computation and
communication.

��	 ����� �� ������


To illustrate the range of control possible using periodic
real-time scheduling on the individual nodes, we ran Patterns
with a compute/communicate ratio of 1:2, making it quite
communication intensive. Note that this configuration is con-
servative: it is far easier to control a more loosely coupled

Figure 2. Compute rate as a function of utiliza-
tion for different ������� � ������ choices.

parallel application with VSched. We ran Patterns repeat-
edly, with different ������� � ������ combinations. Figure 2
shows these test cases. Each point is an execution of Patterns
with a different (������ � �����), plotting the execution rate of
Patterns as a function of Patterns utilization on the individual
nodes. Notice the line on the graph, which is the ideal con-
trol curve that the control algorithm is attempting to achieve,
control over the execution rate of the application with pro-
portional utilization (������	� � ������� � � ). Clearly, there
are choices of ������� � ������ that allow us to meet all of the
requirements.

��� ������
� ��
������ ��� �����

Although there clearly exist ������� � ������ schedules that
can achieve an execution rate with (or without) proportional
utilization, we cannot simply use only the local schedulers
for several reasons:
� The appropriate ������� � ������ is application dependent

because of differing compute/communicate ratios,
granularities, and communication patterns. Making the right
choice should be automatic.

� The user or system administrator may want to dynamically
change the application execution rate �������. The system
should react automatically.

� Our implementation is based on a soft local real-time
scheduler. This means that deadline misses will inevitably
occur and this can cause timing offsets between different
application threads to accumulate. We must monitor and
correct for these slow errors. Notice that this is likely to be
the case for a hard local real-time scheduler as well if the
admitted tasks vary across the nodes.

Figure 3 illustrates what we desire to occur. The target
application execution rate is given in iterations per second,
here being 0.006 iterations/second. The current execution
rate ������	� is calculated after each iteration and reported
to the controller. This is Patterns running with a 1:1 com-
pute/communicate ratio on two nodes. The lower curve is
that of simply using VSched locally to schedule the appli-
cation. Although we can see that the rate is correct for the
first few iterations, it then drifts downward, upward, and
once again downward over the course of the experiment. The
roughly straight curve is using VSched, the global controller,



(a) high (5:1) comp/comm ratio (b) medium (1:1) comp/comm ratio (c) low (1:5) comp/comm ratio

Figure 4. System in stable configuration for varying comp/comm ratio.

Figure 3. Elimination of drift using global feed-
back control; 1:1 comp/comm ratio.

and the control algorithm. We can see that the tendency to
drift has been eliminated using global feedback control.

��� ���
������ ��� ������
 �
�������

We studied the performance of the control algorithm us-
ing three different compute/communicate ratios (high (5:1)
ratio, medium (1:1) ratio, and low (1:5) ratio), different tar-
get execution rates �������, and different thresholds �. In all
cases �
����
 � � ms, where�
����
 is the change in period
effected by VSched when the application execution rate goes
outside of the threshold range, the ����� is then adjusted such
that � � �������.

Figure 4 shows the results for high, medium, and low test
cases with a 3% threshold. We can see that the target rate is
easily and quickly achieved, and remains stable for all three
test cases. Note that the execution rate of these test cases
running at full speed without any scheduling are slightly dif-
ferent. ������	� is calculated in the end of every iteration.

Next, we focus on two performance metrics:
� Minimum threshold: What is the smallest � below which

control becomes unstable?
� Response time: for stable configurations, what is the typical

time between when the target execution rate ������� changes
and when the �������� � ������� � � ?

Being true for all feedback control systems, the error thresh-
old will affect the performance of the system. When the
threshold � is too small, the controller becomes unstable and

Figure 5. System in oscillation when error
threshold is made too small; 1:1 comp/comm
ratio.

fails because the change applied by the control system to cor-
rect the error is even greater than the error. For our control
algorithm, when the error threshold is � �%, the controller
will become unstable. Figure 5 illustrates this behavior. Note
that while the system is now oscillating, it appears to degrade
gracefully.

Figure 6 illustrates our experiment for measuring the re-
sponse time. The target rate is changed by the user in the
middle of the experiment. Our control system quickly ad-
justs the execution rate and stabilizes it. It shows that the
response time is about 32 seconds, or two iterations, for the
case of 1:1 compute/communicate ratio. The average re-
sponse time over four test cases (1 high, 2 medium, and 1 low
compute/communicate ratios) is 30.68 seconds. In all cases,
the control algorithm maintains � � ������� as an invariant
by construction.

��� ������ �� 
����� �� ������
 �
�������

Figure 7 summarizes the response time, communication
cost to support the feedback control, and threshold limits of
our control system. Overall we can control with a quite small
threshold �. The system responds quickly, on the order of a
couple of iterations of our benchmark. The communication
cost is minuscule, on the order of just a few bytes per iter-
ation. Finally, these results are largely independent of the
compute/communicate ratio.



High (5:1) compute/communicate ratio Medium (1:1) compute/communicate ratio Low (1:5) compute/communicate ratio
Response Threshold Feedback Response Threshold Feedback Response Threshold Feedback
time limit comm. cost time limit comm. cost time limit comm. cost
29.16 s 2 % 32 bytes/iter 31.33 s 2 % 32 bytes/iter 32.01 s 2 % 32 bytes/iter

Figure 7. Response time and threshold limits for the control algorithm.

Figure 6. Response time of control algorithm;
1:1 comp/comm ratio.

Figure 8. Dynamically varying execution rates;
1:1comp/comm ratio.

The exceptionally low communication involved in
performance-targetted feedback-controlled real-time
scheduling is a natural consequence of the deterministic and
predictable periodic real-time scheduler being used on each
node.

��! " ����� ������ ��������� �����

As we mentioned earlier, using the feedback control
mechanism, we can dynamically change the target execution
rates and our control system will continuously adjust the real-
time schedule to adapt to the changes. To see how our sys-
tem reacts to user inputs over time, we conducted an exper-
iment in which the user adjusted his desired target rate four
times during the execution of the Patterns application. As
shown in Figure 8, the control algorithm works well. After
the user changes the target rate, the algorithm quickly adjusts
the schedule to reach the target.

��# �������� �������
 
���

Any coupled parallel program can suffer drastically from
external load on any node; the program runs at the speed of

Figure 9. Performance of control system un-
der external load; 3:1 comp/comm ratio; 3%
threshold.

the slowest node. We have previously shown that the periodic
real-time model of VSched can shield the program from such
external load, preventing the slowdown [11]. Here we want
to see whether our control system as a whole can still protect
a BSP application from external load.

We executed Patterns on four nodes with the target execu-
tion rate set to half of its maximum rate. On one of the nodes,
we applied external load, a program that contends for the
CPU using load trace playback techniques [4]. Contention
is defined as the average number of contention processes that
are runnable. Figure 9 illustrates the results. At roughly the
15th iteration, an external load is placed on one of the nodes
in which Patterns is running, producing a contention of 1.0.
We note that the combination of VSched and the feedback
controller are able to keep the performance of Patterns inde-
pendent of this load. We conclude that our control system can
help a BSP application maintain a fixed stable performance
under a specified execution rate constraint despite external
load.

��$ %&� �� '��������

When we ran the NAS IS (Integer Sort) benchmark with-
out leveraging our control system, we observed that different
nodes have different CPU utilizations. This is very different
from the Patterns benchmark, which does roughly the same
amount of computation and communication on each node. In
our experiment, for a specific configuration of NAS IS exe-
cuting on four nodes, we observed an average utilization of
�28% for two nodes and �14% average utilization for the
other two nodes.

This variation has the potential to challenge our control
system, since in our model we assume the same target uti-
lization � on each node, and we apply the same schedule on
each node. We ran an experiment where we set the target
utilization to be half of the maximum utilization among all



Figure 10. Running NAS benchmark under
control system; 3% threshold.

Figure 11. Running of two Patterns bench-
marks under the control system, 1:1
comp/comm ratio.

nodes, i.e. 14%. Figure 10 illustrates the performance in this
case. We can see that the actual execution rate is successfully
brought to within � of the target rate.

We are currently designing a system in which the global
controller is given the freedom to set a different schedule on
each node thus making our control system more flexible.

��( )���*������� ��
���
� ���
��������

To see how well we can provide time-sharing for multiple
parallel applications, we simultaneously executed multiple
Patterns benchmarks on the same four nodes of our cluster.

Figure 11 shows the results of running two Patterns ap-
plications, each configured with a 1:1 compute/communicate
ratio. One was configured with a target rate of 30%, with the
other set to 40%. We can clearly see that the actual execution
rates are quickly brought to within � of the target rates and
remain there for the duration of the experiment. Next, we
consider what happens as we increase the number of Patterns
benchmarks running simultaneously. In the following, each
Patterns benchmark is set to execute with identical 10% uti-
lization. We ran Patterns with a 3:1 compute/communicate
ratio. Figure 12 shows our results. Each graph shows the ex-
ecution rate (iterations/second) as a function of the iteration,
as well as the two 3% threshold lines. Figure 12(a) contains
two such graphs, corresponding to two simultaneously exe-
cuting Patterns benchmarks, (b) has three, and so on.

Overall, we maintain reasonable control as we scale the
number of simultaneously executing benchmarks. Further,

over the thirty iterations shown, in all cases, the average exe-
cution rate meets the target, within threshold.

We do notice a certain degree of oscillation when we run
many benchmarks simultaneously. Our explanation is as fol-
lows. When VSched receives and admits a new schedule
sent by the global controller, it will interrupt the current task
and re-select a new task (perhaps the previous one) to run
based on its deadline queue. As the number of parallel ap-
plications increases, each process of an application on an
individual node will have a smaller chance of running un-
interrupted throughout its slice. In addition, there will be a
smaller chance of each process starting its slice at the same
time.

The upshot is that even though the process will continue
to meet its deadlines locally, it will be less synchronized with
processes running on other nodes. This results in the applica-
tion’s overall performance changing, causing the global con-
troller to be invoked more often. Because the control loop
frequency is less than the frequency of these small perfor-
mance changes, the system begins to oscillate. However, the
degradation is graceful, and, again, the long term averages
are well behaved.

���+ �,���� �� 
���
 ���� �-.

Although we are only scheduling the CPU resource, it is
clear from the above that this is sufficient to isolate and con-
trol a BSP application with complex collective communica-
tions of significant volume. Is it sufficient to control such an
application when it also extensively performs local disk I/O?

To study the effects of local disk I/O on our schedul-
ing system, we modified the Patterns benchmark to perform
varying amounts of local disk I/O. In the modified Patterns,
each node writes some number of bytes sequentially to the
local IDE hard disk during each iteration. It is ensured that
the data is written to the physical disk by using fsync()
call.

In our first set of experiments, we configured Patterns with
a very high (145:1) compute/communicate ratio, and 0, 1, 5,
10, 20, 40, and 50 MB per node per iteration of local disk I/O.
Our target execution rate was 50% with a threshold of 3%.
Figure 13 shows the results for 10, 20, and 40 MB/node/iter.
0, 1, 5 are similar to 10, while 50 is similar to 40. For up to
10 MB/node/iter, our system effectively maintains control of
the application’s execution rate. As we exceed this limit, we
develop a slight positive bias; the application runs faster than
desired despite the restricted CPU utilization. The dominant
part of the time spent on local disk I/O is spent waiting for
the disk. As more I/O is done, a larger proportion of applica-
tion execution time is outside of the control of our system.
Since the control algorithm requires that the CPU utiliza-
tion be equal to the target execution rate, the actual execu-
tion rate grows. In the second set of experiments, we fixed
the local disk I/O to 10 MB/node/iter (the maximum con-
trollable situation in the previous experiment) and varied the
compute/communicate ratio, introducing different amounts
of network I/O. We used a target rate of 50%. We used seven
compute/communicate ratios ranging from 4900:1 to 1:3.5.
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Figure 12. Running multiple Patterns benchmarks; 3:1 comp/comm ratio; 3% threshold.

Figure 14 shows the results for 4900:1, 2:1, and 1:3.5. For
high to near 1:1 compute/communicate ratios, our system can
effectively control the application’s execution rate even with
up to 10 MB/node/iteration of local I/O, and degrades grace-
fully after that.

Our system can effectively control the execution rates of
applications performing significant amounts of network and
local disk I/O. The points at which control effectiveness be-
gins to decline depends on the compute/communicate ratio

and the amount of local disk I/O. With higher ratios, more
local disk I/O is acceptable. We have demonstrated control
of an application with a 1:1 ratio and 10 MB/node/iter of lo-
cal disk I/O.
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Our technique makes no attempt to isolate memory, but
the underlying node OS certainly does so. Is it sufficient?



(a) 10 MB/node/iter I/O (b) 20 MB/node/iter I/O (c ) 40 MB/node/iter I/O

Figure 13. Performance of control system with a high (145:1) comp/comm ratio and varying local disk
I/O.

(a) high (4900:1) comp/comm ratio (b) medium (2:1) comp/comm ratio (c) low (1:3.5) comp/comm ratio

Figure 14. Performance of control system with 10 MB/node/iter of disk I/O and varying comp/comm
ratios.

To evaluate the effects of physical memory contention on
our scheduling system, we modified the Patterns benchmark
so that we could control its working set size. We then ran
two instances of the modified benchmark simultaneously on
the four nodes of our cluster. We configured the first instance
with a working set of 600 MB and a target execution rate
of 30%, while the second was configured with a working set
size of 700 MB and a target rate of 40%. Both instances had a
compute/communicate ratio of around 130:1. The combined
working set of 1.3 GB is slightly less than the 1.5 GB of
memory of our cluster nodes.

We used the control algorithm to schedule the two in-
stances, and Figure 15 shows the results of this experiment.
We see that despite the significant use of memory by both
instances, our system maintains control of both applications’
execution rates.

Our results suggest that unless the total working set on the
machine is exceeded, physical memory use has little effect
on the performance of our scheduling system. It is impor-
tant to point out that most OS kernels, including Linux, have
mechanisms to restrict the physical memory use of a process.
These mechanisms can be used to guarantee that the physical
memory pressure on the machine does not exceed the supply.
A virtual machine monitor such as Xen or VMware provides
additional control, enforcing a physical memory limit on a
guest OS kernel and all of its processes.

Figure 15. Running two Patterns bench-
marks under the control system; high (130:1)
comp/comm ratio. The combined working set
size is slightly less than the physical memory.

6 Conclusions and future work

We have proposed, implemented, and evaluated a new
self-adaptive approach to time-sharing parallel applications
on tightly coupled compute resources such as clusters. Our
technique, performance-targetted feedback-controlled real-
time scheduling, is based on the combination of local
scheduling using the periodic real-time model and a global
feedback control system that sets the local schedules. The
approach performance-isolates parallel applications and al-
lows administrators to dynamically change the desired appli-



cation execution rate while keeping actual CPU utilization
automatically proportional to the application execution rate.
Our implementation takes the form of a user-level scheduler
for Linux and a centralized controller. Our evaluation shows
the system to be stable with low response times. The thresh-
olds needed to prevent control instability are quite reason-
able. Despite only isolating and controlling the CPU, we find
that memory, communication I/O, and local disk I/O follow.

We are now focusing on how to apply our approach to a
wider range of workloads such as web applications that have
more complex communication and synchronization behav-
ior, and high-performance parallel scientific applications that
have performance requirement which are typically not know
a priori and change as the applications proceed [13]. In re-
lated work, we are considering how to exploit direct feedback
from the end-user in a scheduling system.

References

[1] A. C. Arpaci-Dusseau, D. E. Culler, and A. Mainwaring.
Scheduling with implicit information in distributed systems.
In ACM Sigmetrics, 1998.

[2] J. Chen, G. Soundararajan, and C. Amza. Autonomic pro-
visioning of databases in dynamic content web servers. In
Proceedings of the 3rd IEEE International Conference on Au-
tonomic Computing, 2006.

[3] H.-H. Chu and K. Narhstedt. CPU service classes for mul-
timedia applications. In Proceedings of the IEEE Interna-
tional Conference on Multimedia Computing and Systems,
June 1999.

[4] P. A. Dinda and D. R. O’Hallaron. Realistic CPU workloads
through host load trace playback. In Proc. of 5th Workshop
on Languages, Compilers, and Run-time Systems for Scalable
Computers (LCR), May 2000.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck,
and V. Sunderam. PVM: Parallel Virtual Machine. MIT Press,
Cambridge, Massachusetts, 1994.

[6] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous
parallel algorithms. Journal of Parallel and Distributed Com-
puting, 22(2):251–267, 1994.

[7] A. Gupta and P. A. Dinda. Inferring the topology and traf-
fic load of parallel programs running in a virtual machine
environment. In Proceedings of the 10th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), June
2004.

[8] D. Ingram and S. Childs. The linux-srt integrated multimedia
operating system: bringing qos to the desktop. In Proceedings
of the IEEE Real-time Technologies and Applications Sympo-
sium (RTAS), 2001.

[9] M. Jette. Performance characteristics of gang scheduling
in multiprogrammed environments. In Proceedings of the
1997 ACM/IEEE conference on Supercomputing, pages 1–12,
1997.

[10] Y. K. K. Hyoudou and Y. Nakayama. An implementation of
concurrent gang scheduler for pc cluster systems. In Parallel
and Distributed Computing and Networks, 2004.

[11] B. Lin and P. Dinda. Vsched: Mixing batch and interac-
tive virtual machines using periodic real-time scheduling. In
ACM/IEEE SC 2005 (Supercomputing), 2005.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, January 1973.

[13] H. Liu and M. Parashar. Enabling self-management of com-
ponent based high-performance scientific applications. In
Proceedings of the 14th IEEE International Symposium on
High Performance Distributed Computing, 2005.

[14] X. Liu, X. Zhu, S. Singhal, and M. Arlitt. Adaptive enti-
tlement control of resource containers on shared servers. In
Proceedings of the IFIP/IEEE International Symposium on
integrated Network Management, 2005.

[15] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,
and M. Marley. Performance specifications and metrics for
adaptive real-time systems. In Proceedings of 21st IEEE
Real-Time Systems Symposium, 2000.

[16] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feed-
back control real-time scheduling: Framework, modeling,
and algorithms. Special issue of Real-Time Systems Journal
on Control-Theoretic Approaches to Real-Time Computing,
23(12):85–126, September 2002.

[17] C. Lu, X. Wang, and X. Koutsoukos. Feedback utiliza-
tion control in distributed real-time systems with end-to-end
tasks. IEEE Transactions on Parallel and Distributed Sys-
tems, 16(6):550–561, 2005.

[18] J. Nieh and M. Lam. The design, implementation, and evalu-
ation of SMART: A scheduler for multimedia applications. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles, October 1997.

[19] J. Ousterhout. Scheduling techniques for concurrent systems.
In Proceedings of ICDCS, 1982.

[20] C. L. Scott A. Brandt, Scott Banachowski and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. In Proceedings of IEEE Real-
Time Systems Symposium, 2003.

[21] J. A. Stankovic, T. He, T. F. Abdelzaher, M. Marley, G. Tao,
S. H. Son, and C. Lu. Feedback control scheduling in dis-
tributed real-time systems. In Proceedings of IEEE Real-Time
Systems Symposium, 2001.

[22] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A feedback-driven proportion allocator for
real-rate scheduling. In Proceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Implementation,
1999.

[23] P. Strazdins and J. Uhlmann. A comparison of local and gang
scheduling on a beowulf cluster. In Proceedings of the 2004
IEEE International Conference of Cluster Computing, pages
55–62, 2004.

[24] J. Subhlok, T. Gross, and T. Suzuoka. Impact of job mix on
optimizations for space sharing schedulers. In Proceedings of
Supercomputing ’96, November 1996.

[25] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8), August 1990.

[26] S. White, A. Alund, and V. S. Sunderam. Performance of the
NAS parallel benchmarks on PVM-Based networks. Journal
of Parallel and Distributed Computing, 26(1):61–71, 1995.

[27] W. Xu, X. Zhu, S. Singhal, and Z. Wang. Predictive control
for dynamic resource allocation in enterprise data centers. In
Proceedings of the IEEE/IFIP Network Operations and Man-
agement Symposium, 2006.


