
1

TimeTime--sharing Parallel Applications sharing Parallel Applications
With Performance Isolation and With Performance Isolation and

ControlControl
Bin Lin

Ananth I. Sundararaj
Peter A. Dinda

Department of EECS
Northwestern University

http://presciencelab.org

2

Take-away points
• Designed, implemented, and evaluated a new

approach to time-sharing parallel applications
with performance isolation

• Approach based on periodic real-time
scheduling of nodes combined with global
feedback control of real-time constraints

• Provides a simple way to control execution rate
of applications while maintaining efficiency

• Despite only isolating and controlling CPU,
memory, comm I/O, and local disk I/O follow

3

Outline
• Batch parallel workload

– BSP model
– Challenges

• Periodic real-time scheduling
– VSched [Lin et al, SC’05]

• Feedback control system
• Evaluation
• Conclusions

4

Outline
• Batch parallel workload

– BSP model
– Challenges

• Periodic real-time scheduling
– VSched [Lin, SC’05]

• Feedback control system
• Evaluation
• Conclusions

5

Batch parallel workload

• Use tightly-coupled resources (e.g.
cluster)

• Synchronizing collective communication
• Bulk Synchronous Parallel (BSP) model

– Computation and communication
• If run on time-sharing machines

– Nodes must be carefully scheduled
– One thread may stall the whole application

6

Batch parallel workload (cont.)

• Space-sharing resources to avoid stalls
– Exclusive resource use
– Limit utilization; CPU idle during comm or I/O
– Likely block other processes
– Coarse control of execution rate & response time

• We propose performance-targetted feedback
controlled real-time scheduling.
– Time-sharing with performance isolation
– Fine control of execution rate & response time
– Resource utilization proportional to execution rate

7

Outline
• Batch parallel workload

– BSP model
– Challenges

• Periodic real-time scheduling
– VSched [Lin, SC’05]

• Feedback control system
• Evaluation
• Conclusions

8

Task (50 ms, 20 ms)

(period, slice) Unit: millisecond

task arrives

Time(millisecond)

Periodic Real-time Scheduling Model

•Task runs for slice seconds every period seconds
[JACM 1973]

0 50 100 1501207020

9

Periodic Real-time Scheduling Model

• Task runs for slice seconds every period seconds
– “1 hour every 10 hours”, “1 ms every 10 ms”

• Does NOT imply “1 hour chunk” (but does not preclude it)

– Compute rate: slice / period
• 10 % for both examples, but radically different interactivity!

– Completion time: size / rate
• 24 hour job completes after 240 hours

• Unifying abstraction for diverse workloads

10

EDF Online Scheduling

• Dynamic priority preemptive scheduler
• Always runs task with highest priority
• Tasks prioritized in reverse order of

impending deadlines
– Deadline is end of current period

EDF=“Earliest Deadline First”

11

VSched tool

• Provides soft real-time (limited by Linux)
• Runs at user-level (no kernel changes)
• Schedules any set of processes
• Supports very fast changes in constraints

[Lin et al, SC’05]

12

VSched tool

• Supports (slice, period) ranging into days
– Fine millisecond and sub-millisecond ranges

for interactive processes
– Coarser constraints for batch processes

• Client/Server: remote control scheduling
• Publicly released

http://virtuoso.cs.northwestern.edu.

13

Outline
• Batch parallel workload

– BSP model
– Challenges

• Periodic real-time scheduling
– VSched [Lin, SC’05]

• Feedback control system
• Evaluation
• Conclusions

14

Overview

Administrator /
User

Max
application
execution

rate

Target execution
rate

Error threshold

Control system Application

15

Our control system

Rmaxrtarget

rcurrent

ε

rtarget - ε ≤ U ≤ rtarget + ε
Same (period, slice)
constraint is used for
each VSched

16

Input

• Rmax: max app execution rate
• rtarget: set point; % Rmax; supplied by user or

system admin
• rcurrent: feedback input; current app

execution rate; % Rmax

• ε: error threshold; %
• U: current utilization; slice/period
• rtarget - ε ≤U≤ rtarget + ε: optional input from

user

17

Control algorithm

• Define error e = rcurrent – rtarget

• Goal
– Error is within threshold: |e| ≤ ε
– Schedule is efficient: U = rcurrent ± ε

18

Control algorithm

• Define error e = rcurrent – rtarget

• Goal
– Error is within threshold: |e| ≤ ε
– Schedule is efficient: U = rcurrent ± ε

• Multiple (period, slice) schedules exist for
a given utilization U

19

Multiple “best” (period, slice)s that
achieve desired utilization

Ideal control
curve

rcurrent =
rtarget = U

Inappropriate
(period, slice)
combinations

One execution
of benchmark
with a different
(period, slice)

MFLOP/s: million floating point operations
per second

20

Using only local schedulers is not
enough

• Best schedule is application dependent
– Differing comp/comm ratios, granularities, and

communication patterns
– Making the right choice should be automatic.

• User or system admin may want to dynamically
change app execution rate.
– System should react automatically.

• Soft local real-time scheduler
– Deadline misses will inevitably occur, causing timing

offsets b/w app threads to accumulate.
– Must monitor & correct for these slow errors.

21

Schedule selection and drift

rcurrent calculated in the end of
every iteration

1:1 comp/comm
ratio on 2 nodes

22

Control algorithm (cont.)
• Define error e = rcurrent – rtarget

• Goal
– Error is within threshold: |e|≤ε
– Schedule is efficient: U = rcurrent ± ε

• If |e| › ε, decrease period by ∆period and decrease
slice by ∆slice, such that U = rtarget
– Startup period 200ms; if period ≤ minperiod, reset

period
• If |e| ≤ ε, do nothing
• Simple linear search

– Maintains U and searches (period, slice) space from
larger to smaller granularity

23

Multiple “best” (period, slice)s that
achieve desired utilization

Ideal control
curve

U =
slice / period

24

Outline
• Batch parallel workload

– BSP model
– Challenges

• Periodic real-time scheduling
– VSched [Lin, SC’05]

• Feedback control system
• Evaluation
• Conclusions

25

Evaluation framework

• IBM e1350 cluster (Intel Xeon 2.0 GHz,
1.5 GB RAM, Gigabit Ethernet
interconnect, Linux 2.4.20)

• BSP benchmark; Patterns; all-to-all
communication

• NAS benchmark; IS (integer sort)
• Each node runs VSched, and a separate

node runs the controller.

26

Evaluation framework

• IBM e1350 cluster (Intel Xeon 2.0 GHz,
1.5 GB RAM, Gigabit Ethernet
interconnect, Linux 2.4.20)

• BSP benchmark; Patterns; all-to-all
communication

• NAS benchmark; IS (integer sort)
• Each node runs VSched, and a separate

node runs the controller.

27

Evaluating control algorithm

• Three comp/comm ratios
– high (5:1) ratio, medium (1:1) ratio, and low

(1:5) ratio
• Different rtarget (% of Rmax)
• Different error threshold ε

• ∆period = 2ms, ∆slice adjusted such that
U= rtarget

28

Quick and stable control of app
execution rate

medium (1:1)
comp/comm ratio

target execution rate

29

Evaluating control algorithm (cont.)

• Three comp/comm ratios
– high (5:1) ratio, medium (1:1) ratio, and low

(1:5) ratio
• Different rtarget (% of Rmax)
• Different error threshold ε

– Minimum threshold: the smallest ε below
which control becomes unstable

• ∆period = 2ms, ∆slice adjusted such that
U= rtarget

30

System in oscillation when error
threshold is too small

1:1 comp/comm
ratio

While system is oscillating, it appears to degrade gracefully.

31

Evaluating control algorithm (cont.)

• Three compute/communicate ratios
– high (5:1) ratio, medium (1:1) ratio, and low (1:5) ratio

• Different rtarget

• Different error threshold ε
– Minimum threshold: the smallest ε below which

control becomes unstable
• ∆period = 2ms, ∆slice adjusted such that U=

rtarget

• Response time
– for stable configurations, time between when rtarget

changes and when rcurrent = rtarget ± ε

32

Response time of control algorithm
1:1 comp/comm
ratio

33

Dynamically varying execution
rates

1:1 comp/comm
ratio

34

Summary of alg limits on our
testbed & benchmarks

• Small error
threshold

• Low response time
• Tiny

communication
cost

• Results largely
independent of
comp/comm ratio

35

Ignore external load

1 full busy thread

3:1 comp/comm
ratio

36

Time-sharing multiple BSP
applications

1:1 comp/comm
ratio

What happens as we increase the number of benchmarks running simultaneously?

37

Time-sharing multiple BSP
applications (cont.)

1:1 comp/comm
ratio; 3% threshold

3 benchmarks 4 benchmarks

10% utilization for
each benchmark

38

Time-sharing multiple BSP
applications (cont.)

• Maintain reasonable control as we scale
• Certain degree of oscillation

– Local scheduler schedule interrupt
– Individual host, num of processes increases

• Smaller chance of running uninterrupted throughout its slice
• Smaller chance of starting its slice at same time.

T1 T1

0 50 1008020 30
Task1(50, 20) ms

Task2(50, 10) ms

Task3(100, 40) ms

Time(millisecond)

T2 T3 T2 T3

60

T1 T1

0 50 1008020 30

T2 T3 T2 T3

60

T1

10

T3 T1

70 90

(period, slice)

39

Time-sharing multiple BSP
applications (cont.)

• Maintain reasonable control as we scale
• Certain degree of oscillation

– Local scheduler schedule interrupt
– Individual host, num of processes increases

• Smaller chance of running uninterrupted throughout its slice
• Smaller chance of starting its slice at same time.

Less synchronized with processes on other nodes

Global controller invoked more often

System begins to oscillate
However, degradation is graceful, and long term averages are well behaved.

Feedback control loop freq less than
freq of small performance changes

40

Effects of local disk I/O

• Modified benchmark to write to disk in
every iteration; fsync()

• 1) high comp/comm ratio
– 0, 1, 5, 10, 20, 40, 50 MB/node/iter disk I/O

• 2) 10MB/node/iter disk I/O
– different comp/comm ratios

41

Effectively control execution rates

10 MB/node/iter
I/O

42

Positive bias; app runs faster than
desired

40 MB/node/iter
I/O

More I/O, a larger proportion of app
execution time is outside of control

43

Effect of local disk I/O

• Modified benchmark to write to disk in
every iteration; fsync()

• 1) high comp/comm ratio
– 0, 1, 5, 10, 20, 40, 50 MB/node/iter disk I/O

• 2) 10MB/node/iter disk I/O
– different comp/comm ratios

44

Effectively control execution rates despite
significant amounts of network and disk I/O

2:1 comp/comm
ratio plus 10
MB/node/iter disk I/O

45

Degrades gracefully when limits are
exceeded

1:3.5 comp/comm
ratio plus 10
MB/node/iter disk I/O

46

Effect of local disk I/O (cont)
• Modified benchmark to write to disk in every

iteration; fsync()
• 1) high comp/comm ratio

– 0, 1, 5, 10, 20, 40, 50 MB/node/iter disk I/O
• 2) 10MB/node/iter disk I/O

– different comp/comm ratios

• Effectively control exe rates of apps performing
significant amounts of network & disk I/O

• Points at which control begins to decline
depends on comp/comm ratio & amount of disk
I/O

47

Effects of physical memory use

• Modified benchmark to control its mem
working set size

• 1.5GB physical mem; cluster node
• Run 2 instances of benchmark on 4 nodes
• 1.3GB (700 + 600) combined working set

48

Despite significant memory use, our
system maintains control

high
comp/comm
ratio

49

Conclusion
• Designed, implemented, and evaluated a new

approach to time-sharing parallel applications
with performance isolation

• Approach based on periodic real-time
scheduling of nodes combined with global
feedback control of real-time constraints

• Provides a simple way to control execution rate
of applications while maintaining efficiency

• Despite only isolating and controlling CPU,
memory, comm I/O, and local disk I/O follow.

50

Future work

• Apply our approach to wider range of
workload, e.g.
– Web applications (complex comm & sync

behavior)
– High-performance parallel scientific

applications (requirement not know a priori)
• Exploit direct feedback from end-user to

solve optimization problem

51

Thank you!

• Bin Lin’s homepage:
http://www.cs.northwestern.edu/~blin

• Thesis: User-directed Adaptation

• Group project webpage:
http://virtuoso.cs.northwestern.edu

• Presciencelab webpage:
http://presciencelab.org

52

Related work
• Gang scheduling

– Fine-grain scheduling
– Schedule all app’s threads at identical times on

different nodes
– Complex code
– High cost of communication for synchronization

• Implicit co-scheduling
– Reduce communication by inferring remote scheduler
– Complexity in inference & adapting local schedule
– Difficult to control execution rate, response time and

resource usage
• Feedback based control in many other domains

