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Take-away points
• Designed, implemented, and evaluated a new 

approach to time-sharing parallel applications 
with performance isolation

• Approach based on periodic real-time 
scheduling of nodes combined with global 
feedback control of real-time constraints

• Provides a simple way to control execution rate 
of applications while maintaining efficiency

• Despite only isolating and controlling CPU, 
memory, comm I/O, and local disk I/O follow
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Outline
• Batch parallel workload

– BSP model
– Challenges

• Periodic real-time scheduling
– VSched [Lin et al, SC’05]

• Feedback control system
• Evaluation
• Conclusions
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Batch parallel workload

• Use tightly-coupled resources (e.g. 
cluster)

• Synchronizing collective communication
• Bulk Synchronous Parallel (BSP) model

– Computation and communication
• If run on time-sharing machines

– Nodes must be carefully scheduled
– One thread may stall the whole application
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Batch parallel workload (cont.)

• Space-sharing resources to avoid stalls
– Exclusive resource use
– Limit utilization; CPU idle during comm or I/O
– Likely block other processes
– Coarse control of execution rate & response time

• We propose performance-targetted feedback 
controlled real-time scheduling.
– Time-sharing with performance isolation
– Fine control of execution rate & response time
– Resource utilization proportional to execution rate
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Task (50 ms, 20 ms)

(period, slice) Unit: millisecond

task arrives

Time(millisecond)

Periodic Real-time Scheduling Model

•Task runs for slice seconds every period seconds 
[JACM 1973]
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Periodic Real-time Scheduling Model

• Task runs for slice seconds every period seconds
– “1 hour every 10 hours”, “1 ms every 10 ms”

• Does NOT imply “1 hour chunk” (but does not preclude it)

– Compute rate: slice / period
• 10 % for both examples, but radically different interactivity!

– Completion time: size / rate
• 24 hour job completes after 240 hours

• Unifying abstraction for diverse workloads
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EDF Online Scheduling

• Dynamic priority preemptive scheduler
• Always runs task with highest priority
• Tasks prioritized in reverse order of 

impending deadlines
– Deadline is end of current period

EDF=“Earliest Deadline First”
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VSched tool

• Provides soft real-time (limited by Linux)
• Runs at user-level (no kernel changes)
• Schedules any set of processes
• Supports very fast changes in constraints

[Lin et al, SC’05]
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VSched tool

• Supports (slice, period) ranging into days
– Fine millisecond and sub-millisecond ranges  

for interactive processes
– Coarser constraints for batch processes

• Client/Server: remote control scheduling
• Publicly released 

http://virtuoso.cs.northwestern.edu.
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Overview

Administrator / 
User

Max 
application 
execution 

rate 

Target execution 
rate

Error threshold

Control system Application
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Our control system

Rmaxrtarget

rcurrent

ε

rtarget - ε ≤ U ≤ rtarget + ε
Same (period, slice) 
constraint is used for 
each VSched
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Input

• Rmax: max app execution rate 
• rtarget: set point; % Rmax; supplied by user or 

system admin
• rcurrent: feedback input; current app 

execution rate; % Rmax

• ε: error threshold; %
• U: current utilization; slice/period
• rtarget - ε ≤U≤ rtarget + ε: optional input from 

user
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Control algorithm

• Define error e = rcurrent – rtarget

• Goal
– Error is within threshold: |e| ≤ ε
– Schedule is efficient:  U = rcurrent ± ε
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Control algorithm

• Define error e = rcurrent – rtarget

• Goal
– Error is within threshold: |e| ≤ ε
– Schedule is efficient:  U = rcurrent ± ε

• Multiple (period, slice) schedules exist for 
a given utilization U
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Multiple “best” (period, slice)s that 
achieve desired utilization

Ideal control 
curve

rcurrent = 
rtarget = U

Inappropriate 
(period, slice) 
combinations

One execution 
of benchmark 
with a different 
(period, slice)

MFLOP/s: million floating point operations 
per second
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Using only local schedulers is not 
enough

• Best schedule is application dependent
– Differing comp/comm ratios, granularities, and 

communication patterns
– Making the right choice should be automatic.

• User or system admin may want to dynamically 
change app execution rate.
– System should react automatically.

• Soft local real-time scheduler
– Deadline misses will inevitably occur, causing timing 

offsets b/w app threads to accumulate.
– Must monitor & correct for these slow errors.
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Schedule selection and drift

rcurrent calculated in the end of 
every iteration

1:1 comp/comm
ratio on 2 nodes
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Control algorithm (cont.)
• Define error e = rcurrent – rtarget

• Goal
– Error is within threshold: |e|≤ε
– Schedule is efficient:  U = rcurrent ± ε

• If |e| › ε, decrease period by ∆period and decrease 
slice by ∆slice, such that U = rtarget
– Startup period 200ms; if period ≤ minperiod, reset 

period
• If |e| ≤ ε, do nothing
• Simple linear search

– Maintains U and searches (period, slice) space from 
larger to smaller granularity
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Multiple “best” (period, slice)s that 
achieve desired utilization

Ideal control 
curve

U = 
slice / period
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Evaluation framework

• IBM e1350 cluster (Intel Xeon 2.0 GHz, 
1.5 GB RAM, Gigabit Ethernet 
interconnect, Linux 2.4.20)

• BSP benchmark; Patterns; all-to-all 
communication

• NAS benchmark; IS (integer sort)
• Each node runs VSched, and a separate 

node runs the controller.
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Evaluating control algorithm

• Three comp/comm ratios 
– high (5:1) ratio, medium (1:1) ratio, and low 

(1:5) ratio
• Different rtarget (% of Rmax)
• Different error threshold ε

• ∆period = 2ms, ∆slice adjusted such that 
U= rtarget
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Quick and stable control of app 
execution rate

medium (1:1) 
comp/comm ratio

target execution rate
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Evaluating control algorithm (cont.)

• Three comp/comm ratios 
– high (5:1) ratio, medium (1:1) ratio, and low 

(1:5) ratio
• Different rtarget (% of Rmax)
• Different error threshold ε

– Minimum threshold: the smallest ε below 
which control becomes unstable

• ∆period = 2ms, ∆slice adjusted such that 
U= rtarget
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System in oscillation when error
threshold is too small

1:1 comp/comm
ratio

While system is oscillating, it appears to degrade gracefully.
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Evaluating control algorithm (cont.)

• Three compute/communicate ratios 
– high (5:1) ratio, medium (1:1) ratio, and low (1:5) ratio

• Different rtarget

• Different error threshold ε
– Minimum threshold: the smallest ε below which 

control becomes unstable
• ∆period = 2ms, ∆slice adjusted such that U= 

rtarget

• Response time
– for stable configurations, time between when rtarget

changes and when rcurrent = rtarget ± ε
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Response time of control algorithm
1:1 comp/comm
ratio
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Dynamically varying execution 
rates

1:1 comp/comm
ratio
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Summary of alg limits on our 
testbed & benchmarks

• Small error 
threshold

• Low response time
• Tiny 

communication 
cost

• Results largely 
independent of 
comp/comm ratio
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Ignore external load

1 full busy thread

3:1 comp/comm
ratio
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Time-sharing multiple BSP 
applications

1:1 comp/comm
ratio

What happens as we increase the number of benchmarks running simultaneously?
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Time-sharing multiple BSP 
applications (cont.)

1:1 comp/comm
ratio; 3% threshold

3 benchmarks 4 benchmarks

10% utilization for 
each benchmark
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Time-sharing multiple BSP 
applications (cont.)

• Maintain reasonable control as we scale
• Certain degree of oscillation

– Local scheduler schedule interrupt
– Individual host, num of processes increases

• Smaller chance of running uninterrupted throughout its slice
• Smaller chance of starting its slice at same time.

T1 T1

0 50 1008020 30
Task1(50, 20) ms

Task2(50, 10) ms

Task3(100, 40) ms

Time(millisecond)

T2 T3 T2 T3

60

T1 T1

0 50 1008020 30

T2 T3 T2 T3

60

T1

10

T3 T1

70 90

(period, slice)
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Time-sharing multiple BSP 
applications (cont.)

• Maintain reasonable control as we scale
• Certain degree of oscillation

– Local scheduler schedule interrupt
– Individual host, num of processes increases

• Smaller chance of running uninterrupted throughout its slice
• Smaller chance of starting its slice at same time.

Less synchronized with processes on other nodes

Global controller invoked more often

System begins to oscillate
However, degradation is graceful, and long term averages are well behaved.

Feedback control loop freq less than 
freq of small performance changes
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Effects of local disk I/O

• Modified benchmark to write to disk in 
every iteration; fsync()

• 1) high comp/comm ratio
– 0, 1, 5, 10, 20, 40, 50 MB/node/iter disk I/O

• 2) 10MB/node/iter disk I/O
– different comp/comm ratios



41

Effectively control execution rates

10 MB/node/iter
I/O
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Positive bias; app runs faster than 
desired

40 MB/node/iter
I/O

More I/O, a larger proportion of app
execution time is outside of control
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Effect of local disk I/O
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– different comp/comm ratios
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Effectively control execution rates despite 
significant amounts of network and disk I/O

2:1 comp/comm
ratio plus 10 
MB/node/iter disk I/O
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Degrades gracefully when limits are 
exceeded

1:3.5 comp/comm
ratio plus 10 
MB/node/iter disk I/O
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Effect of local disk I/O (cont)
• Modified benchmark to write to disk in every 

iteration; fsync()
• 1) high comp/comm ratio

– 0, 1, 5, 10, 20, 40, 50 MB/node/iter disk I/O
• 2) 10MB/node/iter disk I/O

– different comp/comm ratios

• Effectively control exe rates of apps performing 
significant amounts of network & disk I/O

• Points at which control begins to decline 
depends on comp/comm ratio & amount of disk 
I/O
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Effects of physical memory use

• Modified benchmark to control its mem
working set size

• 1.5GB physical mem; cluster node
• Run 2 instances of benchmark on 4 nodes
• 1.3GB (700 + 600) combined working set
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Despite significant memory use, our 
system maintains control

high 
comp/comm
ratio
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Conclusion
• Designed, implemented, and evaluated a new 

approach to time-sharing parallel applications 
with performance isolation

• Approach based on periodic real-time 
scheduling of nodes combined with global 
feedback control of real-time constraints

• Provides a simple way to control execution rate 
of applications while maintaining efficiency

• Despite only isolating and controlling CPU, 
memory, comm I/O, and local disk I/O follow.
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Future work

• Apply our approach to wider range of 
workload, e.g.
– Web applications (complex comm & sync 

behavior)
– High-performance parallel scientific 

applications (requirement not know a priori)
• Exploit direct feedback from end-user to 

solve optimization problem
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Thank you!

• Bin Lin’s homepage: 
http://www.cs.northwestern.edu/~blin

• Thesis: User-directed Adaptation

• Group project webpage:
http://virtuoso.cs.northwestern.edu

• Presciencelab webpage:
http://presciencelab.org
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Related work
• Gang scheduling

– Fine-grain scheduling
– Schedule all app’s threads at identical times on 

different nodes
– Complex code
– High cost of communication for synchronization

• Implicit co-scheduling
– Reduce communication by inferring remote scheduler
– Complexity in inference & adapting local schedule
– Difficult to control execution rate, response time and 

resource usage
• Feedback based control in many other domains


