Time-sharing Parallel Applications
With Performance Isolation and
Control
Bin Lin
Ananth |. Sundararaj
Peter A. Dinda

o

Department of EECS
Northwestern University

http://presciencelab.org

Take-away points

Designed, implemented, and evaluated a new
approach to time-sharing parallel applications
with performance isolation

Approach based on periodic real-time
scheduling of nodes combined with global
feedback control of real-time constraints

Provides a simple way to control execution rate
of applications while maintaining efficiency

Despite only isolating and controlling CPU,
memory, comm |/O, and local disk |/O follow

Outline

Batch parallel workload
— BSP model
— Challenges

Periodic real-time scheduling
— VSched [Lin et al, SC'05]

Feedback control system
Evaluation
Conclusions

Outline

» Batch parallel workload
— BSP model
— Challenges

Batch parallel workload

Use tightly-coupled resources (e.qg.
cluster)

Synchronizing collective communication
Bulk Synchronous Parallel (BSP) model
— Computation and communication

If run on time-sharing machines
— Nodes must be carefully scheduled
— One thread may stall the whole application

Batch parallel workload (cont.)

* Space-sharing resources to avoid stalls
— Exclusive resource use
— Limit utilization; CPU idle during comm or /O
— Likely block other processes
— Coarse control of execution rate & response time

* We propose performance-targetted feedback
controlled real-time scheduling.
— Time-sharing with performance isolation
— Fine control of execution rate & response time
— Resource utilization proportional to execution rate

Outline

» Periodic real-time scheduling
— VSched [Lin, SC'05]

Periodic Real-time Scheduling Model

*Task runs for slice seconds every period seconds
[JACM 1973]

(period, slice) Unit: millisecond

Task (50 ms, 20 ms)

task arrives

~\

>
0 20 50 70 100 120 150

Time(millisecond)
8

Periodic Real-time Scheduling Model

» Task runs for slice seconds every period seconds

7 1}

— “1 hour every 10 hours”, “1 ms every 10 ms”
* Does NOT imply “1 hour chunk” (but does not preclude it)

— Compute rate: slice / period
* 10 % for both examples, but radically different interactivity!

— Completion time: size / rate
* 24 hour job completes after 240 hours

» Unifying abstraction for diverse workloads

EDF Online Scheduling

* Dynamic priority preemptive scheduler
* Always runs task with highest priority

» Tasks prioritized in reverse order of
impending deadlines

— Deadline is end of current period

EDF="Earliest Deadline First”

10

VSched tool

Provides soft real-time (limited by Linux)
Runs at user-level (no kernel changes)
Schedules any set of processes
Supports very fast changes in constraints

[Lin et al, SC’05]

11

VSched tool

» Supports (slice, period) ranging into days

— Fine millisecond and sub-millisecond ranges
for interactive processes

— Coarser constraints for batch processes
» Client/Server: remote control scheduling

* Publicly released
http://virtuoso.cs.northwestern.edu.

12

Outline

* Feedback control system

13

Overview

Max
application

execution
rate

() Target execution

0

rate

—} Control system

Error threshold

Administrator /
User

14

Our control system

rcurrent Application Execution Rate (% of R .,)
- VSched App
£
% threshold
B i VSched App
Target v
Application Z ,| Control
Execution Rate Algorithm
(% Of Ry : VSched App
rtarget | | Rmax
Optional Constraint:
% utilization =% of R ., [VSched App

rtarget - € < U < rtarget + €

Same (period, slice)
constraint is used for 45
each VSched

Input

Rmax: max app execution rate

rarget: S€t pOINt; % Rmax; supplied by user or
system admin

rarrent. feedback input; current app
execution rate; % Rmax

e error threshold; %
U: current utilization; slice/period

Marget - € < U < arget + €. Optional input from
user

16

Control algorithm

 Define error € = rcurrent — rtarget

« Goal
— Error is within threshold: |e| < €
— Schedule is efficient: U = rcurrent €

17

Control algorithm

 Define error € = rcurrent — rtarget

« Goal
— Error is within threshold: |e| < €
— Schedule is efficient: U = rcurrent €

* Multiple (period, slice) schedules exist for
a given utilization U

18

Multiple “best” (period, slice)s that
achieve desired utilization

50 | | | | | | | | .
45 | One execution B i + . il
A0 L | of benchmark { + B
with a different ‘:/@
39 1 | (period, slice) ,@ + i
g O ideat somival
Rt eal contro
. - ek
o e ,@ i ¢~ curve
= 20+ e i Fcurrent = 4
50 © GO el
10 //’/ T \Elnapproprlate -
5 | v * i :t (period, slice) |
o7 + + % - ** combinations
G z $ $ |$ i l 1 I |

0 01 02 03 04 05 06 07 08 069
MFLOP/s: million floating point operations Utilization

per second

1

Using only local schedulers is not
enough

» Best schedule is application dependent

— Differing comp/comm ratios, granularities, and
communication patterns

— Making the right choice should be automatic.

» User or system admin may want to dynamically
change app execution rate.
— System should react automatically.

« Soft local real-time scheduler

— Deadline misses will inevitably occur, causing timing
offsets b/w app threads to accumulate.

— Must monitor & correct for these slow errors.

20

Schedule selection and drift

0.013
Application execution rate with feedback control
0.011 1:1 comp/comm
ratio on 2 nodes
Upper threshold: positive error of 3%
0.009-
_ Lower threshold: negative error 3%
0.0071

0.005

0 003_' Application execution rate without
' : any feedback control

Execution rate (iterations/second)

oo —r—m—mm——
0 5 10 15 20 25 30 35 40 45 50

rcurrent calculated in the end of lterati b)
every iteration eration number

Control algorithm (cont.)

Define error e = rcurrent — Itarget
Goal

— Error is within threshold: |e|<¢
— Schedule is efficient: U = rcurrent £ €

If |e| > €, decrease period by Aperiod and decrease
slice by Aslice, such that U = rtarget

— Startup period 200ms; if period < minperiod, reset
period

If |e| < €, do nothing
Simple linear search

— Maintains U and searches (period, slice) space from
larger to smaller granularity

22

MFLOP/s

Multiple “best” (period, slice)s that

50

45 |
40 |
35 |
30 |
25 |
20 |
15 |
10 |
5_

0

achieve desired utilization

| | | | | l I | .
---------- e
_slice/ period ,@ .
""""""""""""" @’ + i

P =+
@+ :
@N‘::::f::‘ Ideal control
it + curve
N C> + i
+
/’/ + + T 1 i
t 1 & * 1
£ & = + 2

01 02 03 04 05 06 07 08 09 1
Utilization

23

Outline

Batch parallel workload

— BSP model
— Challenges

Periodic real-time scheduling
— VSched [Lin, SC’05]

Feedback control system
Evaluation

Conclusions

24

Evaluation framework

IBM e1350 cluster (Intel Xeon 2.0 GHz,
1.5 GB RAM, Gigabit Ethernet
interconnect, Linux 2.4.20)

BSP benchmark: Patterns; all-to-all
communication

NAS benchmark; IS (integer sort)

Each node runs VSched, and a separate
node runs the controller.

25

Evaluation framework

* IBM e1350 cluster (Intel Xeon 2.0 GHz,
1.5 GB RAM, Gigabit Ethernet
interconnect, Linux 2.4.20)

« BSP benchmark; Patterns: all-to-all
communication

* Each node runs VSched, and a separate
node runs the controller.

26

Evaluating control algorithm

Three comp/comm ratios

— high (5:1) ratio, medium (1:1) ratio, and low
(1:5) ratio

Different rtarget (% of Rmax)
Different error threshold ¢

Aperiod = 2ms, Aslice adjusted such that
U= rtarget

27

EXecution rate (lterations/second)

Quick and stable control of app

execution rate
0.12

medium (1:1)
comp/comm ratio

/Application execution rate

0.1

0.08 target execution rate

Upper threshold: positive error of 3%
0.06 ‘Il

Lower threshold: negative error of 3%

0 5 10 15 20 25 30 35 40 45
lteration number

50 28

Evaluating control algorithm (cont.)

Three comp/comm ratios

— high (5:1) ratio, medium (1:1) ratio, and low
(1:5) ratio

Different rtarget (% of Rmax)

Different error threshold ¢

— Minimum threshold: the smallest € below
which control becomes unstable

Aperiod = 2ms, Aslice adjusted such that
U= I'target

29

System in oscillation when error
threshold is too small

0.12
= 1:1 comp/comm
S 0.1 Application execution rate ratjo
& /
w

0.08
é - Upper threshold: positive error of 1%
© _
O 0.06- S .
;E. 1 l.ﬂ..M.ﬂ"M-oo‘M.Ho- == i
p _
© |
« 0.04
= ' Lower threshold: negative error of 1%
3 0.02
Q _
>
Lu]

() e —————————————

0 5 10 15 20 25 30 35 40 45 50
lteration number

While system is oscillating, it appears to degrade gracefully. %0

Evaluating control algorithm (cont.)

Three compute/communicate ratios
— high (5:1) ratio, medium (1:1) ratio, and low (1:5) ratio
Different rtarget

Different error threshold ¢

— Minimum threshold: the smallest € below which
control becomes unstable

Aperiod = 2ms, Aslice adjusted such that U=
Itarget

Response time

— for stable configurations, time between when rtarget
changes and when rcurrent = rtarget * €

31

Response time of control algorithm

e
—

1:1 comp/comm
Application execution rate ratio

Upper threshold: positive error 3%

s

Lower threshold: negative error 3%

0.08-

0.06-

Response time = 32 seconds (two iterations)

Execution rate (iterations/second)

0.04
0 S 10 15 20 25 30 35 40 45 50

lteration number

Dynamically varying execution

rates
0.1 Upper threshold' positive error of 3%
Application executlon rate 1:1 comp/comm
ratio
0.08 / [

0.041 Lower threshold: negative error 3%

Execution rate (iterations/second)

0 10 20 30 40 50 60 70 80 90 100
lteration number

Summary of alg limits on our
testbed & benchmarks

High (5:1) compute/communicate ratio

Response | Threshold | Feedback
time limit comm. cost
29.16 s 2 % 32 bytes/iter
Medium (1:1) compute/communicate ratio
Response | Threshold | Feedback

time limit comm. cost
31.33 s 2 % 32 bytes/iter

Low (1:5) compute/communicate ratio

Response | Threshold | Feedback
time limit comim. cost
32.01s 2 % 32 bytes/iter

« Small error
threshold

* Low response time

e Tiny
communication
cost

* Results largely
independent of
comp/comm ratio

34

Execution rate (iterations/second)

Ignore external load

0.06
Application 1 full busy thread
0.05] €xecution External load (1.0 contention)
' rate applied after iteration 15
3:1 comp/comm
0.04 / ratio

0.03

l

0.02
f

\ Upper threshold: positive error of 3%

0.01 qwer threshold: negative error 3%

0 5 10 15 20 256 30 35 40 45 50

. 35
lteration number

Time-sharing multiple BSP
applications

0.14
1:1 comp/comm

lication one's execution rate
App ratio

0.121

Application two's execution rate

0.11

0.08" Upper threshold for two applications: positive error 3%

Execution rate (iterations/second)

0.06-
1 \"4
] R S
0.04 ‘-=-—-——*4';7. —\: v Ai
| A
0.021 L .
| Lower threshold for two applications: negative error 3%
0 - I I I I
0 1 2 3 4)

lteration number

What happens as we increase the number of benchmarks running simultaneou%qy?

0.06 -

0,021 |

0.04

0.02 -

0.06 -
|
0.04 7 |

0.02 1

|
0.04 { |
|

Time-sharing multiple BSP
applications (cont.)

0.04 -
0.02 -

D_

0.02 |

' 10% utilization for
each benchmark
I'.) . -
- \'__,.JI»—"—F—H P ¥ +
0.02 -
1
3 benchmarks o
IL - i e ¥ e .
\'___4- - ¥ == \._,_. #
1
0.04 -
| . 0024)
\‘0—4'/\"\..---"' -*'\.,__4——0—v— = S F——r _._qﬂ/\ :f”_ \

*

1:1 comp/comm
ratio; 3% threshold

¥ /"\ EN i T 2 L —
[e LT - YT—¥ L 3 -
‘
\ » A, e I
v i e, e = ¥ 3 = ¥
4 benchmarks
!
./.\ Y - - PR
— L " 3
b
Y
II'|
, . », A =
S - = - ' w
1 5 9 13 17 21 25 29

Time-sharing multiple BSP
applications (cont.)

« Maintain reasonable control as we scale

« Certain degree of oscillation
— Local scheduler schedule interrupt

— Individual host, num of processes increases
« Smaller chance of running uninterrupted throughout its slice
« Smaller chance of starting its slice at same time.

— = = (period, slice)
> Task1(50, 20) ms

0 20 30 50 60 80 100
Task2(50, 10) ms

Eiﬂ T3 iﬂ T3|T1|T3 Task3(100, 40) ms
>

0 10 20 30 50 60 70 80 90100 38
Time(millisecond)

Time-sharing multiple BSP
applications (cont.)

« Maintain reasonable control as we scale

« Certain degree of oscillation
— Local scheduler schedule interrupt

— Individual host, num of processes increases
« Smaller chance of running uninterrupted throughout its slice
« Smaller chance of starting its slice at same time.

Il

Less synchronized with processes on other nodes

1l

Global controller invoked more often
@ Feedback control loop freq less than

System begins to oscillate freq of small performance changes

However, degradation is graceful, and long term averages are well behaf®ed.

Effects of local disk I/O

 Modified benchmark to write to disk in
every iteration; fsync()

* 1) high comp/comm ratio
-0, 1, 5,10, 20, 40, 50 MB/node/iter disk |I/O

40

Effectively control execution rates

_ 0.035

e Application's execution rate 10 MB/nodel/iter
0

® 0.03 1o

2

I

-

9]

-E 0.025

f'_i _ Upper threshold: positive error of 3%
O 0.021

= |

= : v

= 0.0157

8 1

O Lower threshold: negative error 3%
L

0.01 e

0 5 10 15 20 25 30 35 40
lteration number

Positive bias; app runs faster than
desired

Lower threshold: negative error 3%?

0.01 L s L O A L A D A
0 S 10 15 20 25 30 35 40

lteration number

__ 0.035

= | Application's execution rate 40 MB/nodel/iter
o |

® 0.031 /o

__-{,.\2]

w

S More 1/O, a larger proportion of app

= 0.025 | execution time is outside of control

o

% 0.027 Upper threshold: positive error of 3%
—

-

9

=

@

>

LL

Effect of local disk |/O

 Modified benchmark to write to disk in
every iteration; fsync()

« 2) 10MB/node/iter disk 1/O

— different comp/comm ratios

43

Effectively control execution rates despite
significant amounts of network and disk 1/O

= 0.06
5 2:1 comp/comm
o ' ratio plus 10
o 0.057 Application's execution rate MB/nodeliter disk 1/O
c |
© -
© 0.04 /
E \
Q] Upper threshold: positive error of 3%
= 0.03
5 l
© !
el 0 ._H_._._..-.—"—.-.-.
3 0.021 >
%]
4 _ Lower threshold: negative error 3%
0.01

0 5 10 15 20 25 30 35 40 14
lteration number

Degrades gracefully when limits are

Execution rate (iterations/second)

exceeded

1:3.5 comp/comm

ratio plus 10
MB/nodeliter disk 1/O

Application's execution rate

Upper threshold: positive error of 3%

0 5 10 15 20 25 30 35 40
lteration number

15

Effect of local disk I/O (cont)

Modified benchmark to write to disk in every
iteration; fsync()

1) high comp/comm ratio

- 0,1, 5,10, 20, 40, 50 MB/node/iter disk I/O

2) 10MB/node/iter disk 1/O

— different comp/comm ratios

Effectively control exe rates of apps performing
significant amounts of network & disk 1/O

Points at which control begins to decline
depends on comp/comm ratio & amount of disk
/O

46

Effects of physical memory use

Modified benchmark to control its mem
working set size

1.5GB physical mem; cluster node
Run 2 instances of benchmark on 4 nodes
1.3GB (700 + 600) combined working set

47

Despite significant memory use, our
system maintains control

_ 0.025
Application one's execution rate high
comp/comm
0.02 Application two's execution rate (5tig

0.015 Upper threshold for two applications: positive error 3%

0.01 Popzme™8 A R — .-“IJ"J:
A
- mw—-% :

0.005

Lower threshold for two applications: negative error 3%

Execution rate (iterations/second

0 10 20 30 40 50
lteration number 48

Conclusion

Designed, implemented, and evaluated a new
approach to time-sharing parallel applications
with performance isolation

Approach based on periodic real-time
scheduling of nodes combined with global
feedback control of real-time constraints

Provides a simple way to control execution rate
of applications while maintaining efficiency

Despite only isolating and controlling CPU,
memory, comm |/O, and local disk 1/O follow.

49

Future work

* Apply our approach to wider range of
workload, e.q.

— Web applications (complex comm & sync
behavior)

— High-performance parallel scientific
applications (requirement not know a priori)

» Exploit direct feedback from end-user to
solve optimization problem

50

Thank you!

Bin Lin’'s homepage:
http://www.cs.northwestern.edu/~blin

Thesis: User-directed Adaptation

Group project webpage:
http://virtuoso.cs.northwestern.edu
Presciencelab webpage:
http://presciencelab.org

51

Related work

» Gang scheduling
— Fine-grain scheduling

— Schedule all app’s threads at identical times on
different nodes

— Complex code
— High cost of communication for synchronization

* Implicit co-scheduling
— Reduce communication by inferring remote scheduler

— Complexity in inference & adapting local schedule

— Difficult to control execution rate, response time and
resource usage

* Feedback based control in many other domains

52

