
Automatic Dynamic Run-time Optical Network Reservations

John R. Lange Ananth I. Sundararaj Peter A. Dinda
{jarusl,ais,pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

Optical networking may dramatically change high per-
formance distributed computing. One reason is that opti-
cal networks can support provisioning dynamically config-
urable lightpaths, a form of circuit switching, through reser-
vations. However, to use it (and all other network reserva-
tion mechanisms), the user or developer must modify the
application. We present a system, VRESERVE, that auto-
matically and dynamically creates network reservation re-
quests based on the inferred network demands of running
distributed and/or parallel applications with no modifica-
tion to the application or operating system, and no input
from the user or developer. Our execution model is a collec-
tion of virtual machines interconnected by an overlay net-
work. The overlay network infers application demands, pro-
viding a dynamic run-time assessment of the application’s
topology and traffic load matrix. We then reserve lightpaths
corresponding to the topology and use the overlay to for-
ward virtual network traffic over them. We evaluate our
system on the OMNInet network.

1 Introduction

Many people believe that high speed optical networks
will dramatically extend the capabilities of high perfor-
mance distributed computing. This potential has prompted
the creation of private national and international optical net-
works [19, 1, 20], and the development of new models for
using them. For example, the OptIPuter project [24] uses
a dedicated optical network to interconnect large compute
centers, data storage farms, and visualization centers.

When used with the traditional packet switching
paradigm, optical networks operate with extremely high
bandwidth but also very high latency [3]. This observation

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, EIA-0224449, and
gifts from VMware and Dell. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation
(NSF), VMware, or Dell.

has motivated the optical networking community to inves-
tigate supplementing packet switching with capabilities for
optical circuit switching. Circuit switching is strongly tied
to resource reservations. While considerable work has gone
into reservation mechanisms for packet switched networks,
there has been little deployment of these mechanisms be-
cause of concerns about state size on routers. Circuit
switched networks provide an environment that is poten-
tially more suitable for reservation mechanisms. Since the
state required in a circuit switch is already per-connection,
adding per-connection reservations incurs only a constant
factor increase in state size. Network and CPU reservations
are powerful mechanisms for guaranteeing stable applica-
tion performance.

Circuit switching requires establishing specific paths and
the attributes of those paths, e.g., such as throughput and la-
tency. Currently, this places a new requirement on either the
user, who must manually reserve the network on behalf of
the application, or the developer, who must specifically call
a reservation system API. In either case, manual interven-
tion is required to determine what circuits are needed and
how to provision them. To date very little work has been
done on automatic network reservations based entirely on
the application’s needs at run time.

In this paper, we show that it is both feasible and rela-
tively straightforward to automatically determine the nec-
essary circuits and reserve them appropriately. Further, we
can do so dynamically, changing circuits and reservations
at run-time as the communication needs of the application
change. Finally, our method, which is based on our own
and others’ virtualization technologies and our own infer-
ence mechanisms, works with existing, unmodified appli-
cations and operating systems with no user or developer
intervention. There is good reason to believe that our work
will readily extend to other network reservation schemes as
well.

Our work takes place in the context of Virtuoso [22, 8],
a system for grid computing using virtual machines. We
leverage the following components of Virtuoso:

• Virtual Machine Monitors (VMM). We use VMware
GSX Server [31] to create virtual machines that can

1

support any operating system. Our techniques are not
tied to the use of VMware. We simply need access
to the virtual network interface created by a VMM.
Other options for creating virtual execution environ-
ments such as User-Mode Linux [4] and VServer [17]
also provide this abstraction.

• VNET. VNET [27, 28] is an overlay networking tool
we have developed that creates the illusion for the
user’s VMs that they are connected to the user’s LAN,
while supporting arbitrary overlay topologies, routing,
and even overlay link types that provide the mech-
anisms needed to maximize overlay network perfor-
mance for a given traffic pattern, network performance
characteristics, and diverse security policies. 1

• VTTIF (Virtual Traffic and Topology Inference Frame-
work). VTTIF [12] observes every packet sent by a
VM and infers from this traffic a global communica-
tion topology and traffic load matrix among a collec-
tion of VMs.

In earlier work [28, 29], we showed how we can use
the traffic matrices inferred by VTTIF to drive the mech-
anisms of VNET (and VM migration) to dynamically adapt
the locations and connectivity of VMs to improve applica-
tion performance. In that work, we automatically adapted
the unmodified application to the network. In this work, we
automatically adapt the network to the unmodified applica-
tion.

The idea of dynamically creating overlay networks has
an analogue in the paradigm of creating optical channels
between nodes. Instead of creating an overlay network on
top of the existing Internet infrastructure, we request a ded-
icated light path from the optical network reservation sys-
tem. For our system we experimented with ODIN [18], a
set of optical network services, including provisioning ca-
pabilities, integrated into OMNInet [15], an experimental
circuit switched optical network. We used VTTIF to moni-
tor the application, and generated ODIN requests based on
the inferred topology and traffic load matrix.

VRESERVE alleviates the reservation responsibility for
both the user and the developer. In fact the environment ex-
perienced by both is exactly the same as when a network
without reservations is used. By automatically requesting
network reservations at run-time we have enabled any ap-
plication to transparently and painlessly use dedicated high
speed reservable networks to increase communication per-
formance.

1VNET is available from virtuoso.cs.northwestern.edu.

2 Optical networks

Although optical networking has existed since the 1980s,
there has been a recent resurgence of interest for the follow-
ing reasons:

• Practical optical domain switching and amplification
mechanisms have been developed, allowing the major-
ity of a network path to be purely optical [3, 32].

• The throughput possible in existing optical fiber has
been growing dramatically [21]. As there is much ex-
isting “dark fiber”, this means that dedicated or shared
wide area optical networks for high performance com-
puting are becoming feasible [9, 23].

• Deployment of network reservation systems that can
be used by an end user has stalled. The result is that
commodity Internet performance has become increas-
ingly unpredictable, even on dedicated IP networks.

The core of an optical network is built using optical am-
plifiers, optical switches, and interconnected using fiber-
optic cables. Bits are injected into the network by modu-
lating a laser beam feeding a cable. The center frequency
of the beam is typically referred to as the “lambda”. An
optical amplifier increases the intensity of a range of fre-
quencies. An optical switch directs light of one frequency
(lambda) that arrives on an input port to some output port,
possibly changing its frequency in the process. The map-
ping from input ports and frequencies to output ports and
frequencies defines the configuration of the switch. By con-
figuring interconnected switches appropriately, a light path
can be established from a source host to a destination host.
Such configuration is analogous to call setup in a circuit
switched network.

Networks such as OMNInet [15], Canarie [1], and
NetherLight [20] allow authorized entities to reserve and
provision optical lightpaths. Beyond basic connectivity, this
primitive can be used to create logically separate networks
(perhaps for different groups) that share the same underly-
ing physical resources. It could also be used directly by
applications.

2.1 OMNInet and ODIN

In our evaluation, we use the OMNInet network and the
ODIN light path reservation system. Figure 1 shows the
physical topology of a section of OMNInet. OMNInet is
an experimental fully connected network that spans several
sites in Chicago. We use machines directly connected to
the optical switches at two of the sites. OMNInet is run
by the International Center for Advanced Internet Research
(iCAIR).

10 GE

10 GE

Lake Shore

Photonic
Node

S. Federal

Photonic
Node

W Taylor

1 Gbps

1 Gbps

10 GE

Optera
5200

10Gb/s
TSPR

Photonic
Node

λ4

PP

8600

10 GE

PP

8600

2

3

4

1
λ
λ
λ

λ

λ
λ

λ
2

3

1

Optera
5200

10Gb/s
TSPR

Optera
5200

10Gb/s
TSPR

2

3

4

1
λ
λ
λ

λ
10 GE

10 GE

PP

8600

NWUEN-2

NWUEN-3

NWUEN-4

NWUEN-8 NWUEN-9

5200 OFA

5200 OFA

Optera 5200 OFA

5200 OFA

VM

VM

Network Path
Taken

Potential Paths

Fiber

KM MI
1 35.3 22.0
2 10.3 6.4
3 12.4 7.7
4 7.2 4.5
5 24.1 15.0
6 24.1 15.0
7 24.9 15.5
8 6.7 4.2
9 5.3 3.3

NWUEN
Link

Span Length

Host

Host

Internet

Internet

Figure 1. Physical topology of the OMNInet
testbed network.

Reservation API:
CreatePath(<srcIP>, <dstIP>, <bw>, <lat>);
TeardownPath(<srcIP>, <dstIP>);

ODIN Interface:
oclient -c <srcIP> <dstIP> <lambda#> <flags>
oclient -t <pathID>

Figure 2. Reservation API.

ODIN is a lightpath provisioning system that iCAIR de-
veloped for use on OMNInet. Figure 2 shows the ODIN
provisioning interface. ODIN’s interface for establishing a
lightpath is very similar to VNET’s interface for creating an
overlay link. ODIN uses IP addresses to identify network
nodes. A path reservation request consists of the source
and destination IP addresses, and the required long term
average bandwidth and latency of the path. Networks are
constructed by making a reservation request for each link.
ODIN then uses Ethernet VLANs to ensure that the given
network is fully restricted to the hosts in the network graph.

The time to configure the OMNInet network (create a
collection of lightpaths) is rather large as the expectation is
that this will be done infrequently. The average setup time
we observed is ∼15 seconds, which includes updating all
the switches. Figure 3 shows the ideal and measured (using
ping and ttcp) latency and throughput of the path denoted on
Figure 1 as compared to a path over the commodity Internet.

(a) Latency

(b) Throughput

Figure 3. Latency and throughput of the opti-
cal path as compared to the commodity Inter-
net.

2.2 Reservations in other networks

It is important to note that our work is intended to gen-
eralize to other network reservation systems, whether they
are optical or not. A unifying feature of network reservation
systems is that they require the reserver to provide a model
of the traffic that will be sent along a path and a specifi-
cation of its latency and throughput requirements [6]. Our
system provides this information, which could be used with,
for example, GARA [14].

3 Automatic dynamic reservations

A high-level view of the system is shown in Figure 4.
Each Ethernet packet sent by the application is diverted by

VMM

VADAPT

VRESERVE VNET Overlay

Reservation Service
(ODIN)

VNET
VTTIF

Application

Reservable Network
(OMNInet)

Internet

Figure 4. System overview. Dashed lines indi-
cate control signals, solid lines denote actual
network traffic.

the virtual machine monitor into the VNET overlay net-
work system. VNET forwards the packet on an overlay
link, which may either be realized over the commodity In-
ternet, or through a network that supports reservations (e.g.,
OMNInet). VNET also supplies the packet to our infer-
ence system, VTTIF, for inspection. Local VTTIF agents
collect data on each host and regularly aggregate the infor-
mation on each remote VTTIF instance. A lead VTTIF con-
structs an estimate of the global application topology among
its VMs and the corresponding traffic load matrix. This is
passed to the adaptation system, VADAPT.

VADAPT attempts to improve application performance
using a variety of adaptation mechanisms. One mechanism
is to create new overlay links and corresponding overlay for-
warding rules. After VADAPT has chosen a set of new over-
lay links, it passes it to VRESERVE which creates light-
paths for every link where this is possible. For each new
light path thus created, VADAPT then changes the forward-
ing rules to send the data for the link over the lightpath in-
stead of the commodity Internet.

In the following, we provide more details of the key sub-
systems, VNET, VTTIF, and VRESERVE.

3.1 VNET

VNET [27, 28] is the part of Virtuoso that creates and
maintains the networking illusion that the user’s virtual ma-
chines (VMs) are on the user’s local area network. Each
physical machine that can instantiate virtual machines (a
Host) runs a single VNET daemon. One machine on the
user’s network also runs a VNET daemon. This machine
is referred to as the Proxy. Each of the VNET daemons is
connected by a TCP or a virtual UDP connection (a VNET
link) to the VNET daemon running on the Proxy. This is the
initial star topology that is always maintained. Additional

HostHost

vmnet0

Ethernet Packet Tunneled
over TCP/SSL Connection

Ethernet Packet Captured by
Promiscuous Packet Filter

Ethernet Packet
Injected Directly

into VM
interface

“Host Only”
Network

Ethernet Packet is Matched against
the Forwarding Table on that VNET

If a match is found, packet is
forwarded on the link according to the
rule

In this case a match is found and the
forwarding link is the first link

Each successfully matched packet is
also inspected by VTTIF to determine
the local traffic matrix

Ethernet Packet is Matched
against the Forwarding
Table on that VNET

In this case a match has
been found and the
forwarding link is the
destination interface

Hence the Ethernet packet
will be injected into that
interface

First link Second link (to proxy)

Each VNET might have multiple TCP connections
(overlay “links”), one necessarily to the VNET on Proxy
(“second link” in this case) and others optionally to
VNETs on other Hosts (“first link” in this case)

Local traffic matrix as
inferred by VTTIF in VNET

Periodically sent to the
VNET on the Proxy to form
the global traffic matrix

VNET

ethz

VM
“eth0”

VNET

ethy

IP Network

VM
“eth0”

vmnet0

Figure 5. A VNET link.

links and forwarding rules can be added or removed at any
time to improve application performance.

The VNET daemon running on a machine opens the ma-
chine’s virtual (i.e., VMM-provided hook to the VMs’ inter-
face) or physical Ethernet interfaces in promiscuous mode.
Each packet captured from an interface or received on a link
is matched against a forwarding table to determine where to
send it, the possible choices being sending it over one of
the daemon’s outgoing links or writing it out to one of the
local interfaces. Figure 5 helps to illustrate the operation
of a VNET link. Each successfully matched packet is also
passed to VTTIF to determine the local traffic matrix. Each
VNET daemon periodically sends its inferred local traffic
matrix to the VNET daemon on the Proxy. The Proxy,
through its physical interface, provides a network presence
for all the VMs on the user’s LAN and makes their configu-
ration a responsibility of the user and his site administrator.

3.2 VTTIF

The VTTIF component integrates with VNET to auto-
matically infer the dynamic topology and traffic load of ap-
plications running inside the VMs in the Virtuoso system.
In our earlier work [12], we demonstrated that it is possi-
ble to successfully infer the behavior of a BSP application
by observing the low level traffic sent and received by each
VM in which it is running. We have also shown [28] how
to smooth VTTIF’s reactions so that adaptation decisions
made on its output cannot lead to oscillation. The reaction
time of VTTIF depends on the rate of updates from the in-
dividual VNET daemons and on configuration parameters.
Beyond this rate, we have designed VTTIF to stop reacting,
settling into a topology that is a union of all the topologies
that are unfolding in the network.

VTTIF works by examining each Ethernet packet that a
VNET daemon receives from a local VM. VNET daemons
collectively aggregate this information producing a global
traffic matrix for all the VMs in the system. To provide a
stable view of dynamic changes, it applies a low pass fil-
ter to the updates, aggregating the updates over a sliding
window and basing its decisions upon this aggregated view.
The application topology is then recovered from this matrix
by applying normalization and pruning techniques.

Since the monitoring is done below the VM, it does not
depend on the application or the operating system in any
manner. VTTIF automatically reacts to interesting changes
in traffic patterns and reports them, driving the adaptation
process. VTTIF adds little overhead to VNET. Latency is
indistinguishable while throughput is affected by ∼1%.

3.3 VRESERVE

After VNET has decided which overlay links to create,
but before it has created them, VRESERVE analyzes each
link to determine if it can be better served using a reser-
vation. Currently this is accomplished through a mapping
of default (commodity Internet) interfaces (identified by IP
addresses) to interfaces that are connected to a reservable
network. If both endpoints of the link share a mapping to
the same reservable network, VRESERVE initiates a reser-
vation request for the path between the two corresponding
interfaces. If the request succeeds, VADAPT configures the
overlay link to use the reserved path. If not successful, the
overlay link runs over a path in the commodity Internet.

A key point is that we create an overlay link on top of
the reserved path. At first glance this may seem to be re-
dundant, but it allows us to use VNET to perform routing.
Without the overlay we would be forced to modify the host
machines’ routing tables or rewrite the packet headers. With
the overlay in place, however, we can perform routing trans-
parently.

Initially, however, this proved to be a substantial perfor-
mance bottleneck. VNET was designed for the wide area
and so did not perform especially well on these very fast
links. We redesigned and reimplemented several parts of
VNET to improve performance enough to warrant the use
of the high speed connection. We discuss VNET and other
bottlenecks and our modifications in Section 5.

The actual implementation of VRESERVE is straight-
forward. It is a Perl module imported by VNET that im-
plements a procedural interface for the creation and de-
struction of optical lightpaths. VRESERVE also tracks
any changes to the reservable network’s state made by a
caller. Network reservations are made by interfacing di-
rectly to ODIN. ODIN consists of a server running on a
trusted host and a command-line client. VRESERVE sim-
ply constructs and executes command-lines. Because ODIN

does not support deferred scheduling VRESERVE immedi-
ately indicates success or failure in creating a lightpath.

3.4 Example

A typical execution scenario is as follows. A set of vir-
tual machines V , are started on a distributed set of hosts.
A VNET star topology is created, with a proxy machine
p, to enable communication for every VM in V . A parallel
application is then executed inside each VM in V . All intra-
VM communication is routed through p, and a traffic matrix
is aggregated by VTTIF. From that matrix VTTIF derives a
communication topology amongst the VMs in V . VADAPT
uses this topology, combined with the mapping of VMs to
hosts, to define a better topology amongst the VNET dae-
mons. This topology consists of a set of overlay links E.
We choose k links with the highest bandwidth requirements
from E and place them in H , H ⊆ E. VADAPT passes H
to VRESERVE for action.

VRESERVE analyzes H and determines a subset of
overlay links R for which reservations are possible. VRE-
SERVE then requests reservations for each overlay link in
R. Links that suffer from path reservation failure are re-
moved from R. VNET then creates the overlay network.
This is accomplished by creating an overlay link for each
element in H and adjusting the forwarding rules to send
packets over the reserved paths for the links in R and over
the commodity Internet for H − R. As the communica-
tion pattern changes, a new set H ′ is created by VADAPT
and passed to VNET. VNET and VRESERVE process all
the new links identically as before, generating an overlay
network of H ∪ H ′. However following the creation pro-
cess VNET finds the difference H−H ′, which corresponds
to links not needed in the new topology. It then removes
those links, as well as any reservations allocated to links in
H − H ′.

The implementation of VRESERVE is about 400 lines of
Perl. Half of this is the VRESERVE module, while the other
half interfaces VADAPT to VRESERVE. The majority of
the implementation involves parsing the output from ODIN.
Modifications to VADAPT take the form of VRESERVE
API calls and an added IP address mapping service.

3.5 Limitations and assumptions

In the above and in our experiments, we make the fol-
lowing simplifying assumptions:

• The aim of the application is to increase its throughput.

• All routing on the overlay is shortest path first.

Our heuristic leverages the information provided by VT-
TIF to make the VNET overlay topology conform to the in-
ferred application topology by adding and deleting overlay

Figure 6. The configuration-time costs for the
two VM scenario shown in Figure 1.

links and forwarding rules and by using network reserva-
tion, where possible.

However, in a complete Virtuoso-like system, the control
algorithm of VADAPT must also take into consideration the
measured network data. Further, VM migration, CPU reser-
vation, network reservation, overlay topology configura-
tion, selection of overlay link type, and routing on the over-
lay are simultaneously available as adaptation and reserva-
tion mechanisms to improve application performance and
avoid annoying security policies. This is a challenging op-
timization problem which we have not yet solved.

4 Experiments

To evaluate our system we ran several experiments to de-
termine its performance. In the following, we first examine
the configuration time of our system, and then evaluate the
performance of data transfers through the whole system and
the performance of a simple parallel application benchmark.
The result is an existence proof: the system works and there
is at least one case where it can lead to enhanced perfor-
mance.2

4.1 Configuration time

Figure 6 shows the costs involved in configuring the net-
work using our system. The primary cost was the time
spent in the reservation system itself. Creating a path en-
tails two delays. The first is a software delay. It took ∼2.5
seconds for ODIN to send the configuration commands to
all the switches. The second delay (∼15 seconds) is the

2Our experiments were limited in scope due to a surprise shutdown of
the OMNInet network. Furthermore, during the interval in which we were
able to use it, only one path could be reserved.

Figure 7. Throughput achieved by ttcp on an
optical network.

time needed for the hardware to reconfigure itself and for
the path to stabilize. This stabilization delay is constant, re-
gardless of the complexity of the number of switches being
configured. The software delay, however, will grow linearly
with the number of switches in a path because ODIN does
not currently support parallel configuration. The time taken
to tear down an optical path was ∼12 seconds.

VTTIF is a significant, but smaller contributor to the
setup delay. It must observe traffic for some period of time
before it can report a topology. The VTTIF time is a func-
tion of a number of parameters and can be as low as one
second. For more information, see our previous work [28].
The time to execute VRESERVE and to create the individ-
ual overlay links is lost in the noise.

The total time from the start of network communication
to channeling packets over an overlay link running through
a lightpath is < 30 seconds.

4.2 VM-to-VM TCP performance

In this experiment, we use the configuration of Figure 1
and run the ttcp TCP benchmarking tool in the two VMs.
The system notices the sudden communication between the
VMs and establishes a lightpath between their hosts. We
would expect a dramatic increase of performance thereafter.
The physical network is no longer a bottleneck for the sys-
tem; it is VNET and VMware that become the bottlenecks.
Figure 7 shows the results, comparing the raw throughput
between the two hosts with the VMware throughput and the
throughput using VNET. While acceptable for communi-
cation in the wide area (VNET’s original design goal), a
∼5 MB/s ceiling is far too low. In Section 5, we describe
our VNET enhancements to raise this ceiling. Note that
VMware is the next substantial bottleneck after VNET. We

Figure 8. Increasing the performance of a BSP
benchmark with an all-to-all communication
pattern.

are working to ameliorate this bottleneck as well.

4.3 VM-based BSP benchmark

Here, we use the configuration of Figure 1 and run a
PVM bulk synchronous parallel [11] synthetic benchmark
in the VMs. The benchmark uses an all-to-all communi-
cation pattern, and we measure its execution rate in iter-
ations/second. Figure 8 shows the performance improve-
ment from using a reserved optical network. Performance
increases by 170% when the optical path is used. We also
see the VNET bottleneck.

The upshot of this benchmark and the preceding ttcp
benchmark is that our system can automatically use reserva-
tion systems to improve the performance of distributed and
parallel applications.

5 Making VNET faster

With very high bandwidth networks, VNET is the bot-
tleneck. VNET was originally designed for predominantly
wide-area use. The optical networking scenario has moti-
vated us to dramatically increase its performance through a
variety of techniques.

Unfortunately, the OMNInet network became unavail-
able before we were able to test the improved VNET on it.
In the following, our evaluations are on a switched gigabit
Ethernet environment.

5.1 UDP overlay links

In the version of VNET used in Section 4, all VNET
overlay links are TCP connections. The primary reason was
to make it straightforward to support optional SSL encryp-
tion. This is not essential, since a VNET link is a virtual
Ethernet layer link and thus needs to provide no guarantees
of delivery, ordering, or corruption.

Running VNET over TCP results in lower than necessary
throughput for applications running inside the VMs. Inter-
action between the TCP connection at the application layer
and the TCP connection used for the VNET overlay dramat-
ically reduces performance. A packet loss in the underlying
VNET TCP connection will lead to a retransmission and
hence a delay for the application’s TCP connection, which
in turn could time out and retransmit itself. The applica-
tion’s TCP connection will always detect a packet loss by
the expiration of the retransmission timer rather than by re-
ceipt of triple duplicate acknowledgments. This will then
always trigger slow start instead of fast retransmit, leading
to reduced throughput.

VNET now supports creating overlay links using UDP
in addition to TCP. This increases the throughput seen by
application-level TCP by a factor of two.

5.2 Improved forwarding rule lookup

VNET forwards Ethernet packets. When a packet ar-
rives, it must look up the appropriate forwarding rule based
on the packet’s destination address. We have improved the
lookup mechanism through a forwarding rule cache that
gives us constant time lookups on average. This improved
performance by a factor of three.

5.3 Where things stand

We have improved the performance of VNET, as mea-
sured on a dedicated gigabit Ethernet network, by a factor
of six. However, there is still considerable room for im-
provement and we are a long way from being able to sup-
port gigabit speeds in VNET. Figure 9 illustrates where we
stand.

The following extensions are planned to improve perfor-
mance further:

• Enhanced packet filter and packet injection tools. We
plan to use the memory-mapped I/O support in pcap
to deliver more data from the VM to VNET for each
context switch.

• Migration of forwarding functionality to kernel. We
plan to move the forwarding core of VNET into the
Linux kernel on the host to avoid context switches in
their entirety.

Figure 9. Throughput on a gigabit switch with
different bottlenecks.

• Specialized drivers for the VM. We plan to write a de-
vice driver for use inside the VM that will more effi-
ciently deliver data to VNET.

6 Related Work

Much work has been done on simulating distributed ap-
plications and their communication behavior. Tools such
as GridSim [26], SimGrid [2], and Prophesy [30] were de-
veloped by the grid community to model an application’s
behavior with the goal of understanding its computational
and communication requirements. Using these models net-
work reservations can be made before the application starts,
using simulation results as predictors for network traffic re-
quirements. Our system provides a true run-time reserva-
tion service that does not require any application simula-
tions. Our system also alleviates the requirement that the
user explicitly request advance reservations on behalf of the
application.

Run-time adaptation of optical networks to ISP level
traffic has been previously demonstrated [10]. Our work
takes place at the opposite end of the spectrum; we mea-
sure and adapt for individual applications. The other work
also treats the optical network as a closed topology, most
often seen in the backbone infrastructure of large ISPs. The
network topology was modified to reach an optimized state
by measuring flow characteristics over the entire ISP. Our
project complements this work because we simply make
reservations on an optical network and do not care about
the physical topology, so long as our bandwidth and la-
tency requirements are met, while their work demonstrates
a method of optimizing the physical topology to better meet

collective demands.
Advance reservations [25] can be incorporated into op-

tical and other kinds of networks to enhance application
and network performance. VRESERVE can easily coexist
with advance reservations because on-demand reservation
requests are a special case of advance reservations [7]. An
early version of VRESERVE specifically targeted operation
with deferred reservation requests. While VRESERVE is
able to accept deferred reservations, it is unable to make ad-
vance reservation decisions as it would have to predict, not
just measure, application demands, a service that we have
not yet developed

To the best of our knowledge no previous work ex-
ists that demonstrates on-demand run-time reservations for
unmodified applications. Our system alleviates the need
for application developers and/or users to directly interface
with the reservation system. Reservation requests are made
at run time and are dependent on the applications current
communication requirements.

7 Conclusions

We have demonstrated that it is feasible to automatically
create network reservations on behalf of unmodified appli-
cations, and that such reservations can improve application
performance. Specifically, we reserved lightpaths on behalf
of applications running in virtual machines by observing
their communication traffic over an overlay network and re-
constructing their topology from that low-level traffic. Our
techniques require no modifications of the application or
help from the user or developer.

One question is to what extent our results can generalize.
Must we use VMs and an overlay network? Can we support
other network reservation models? The answer to the latter
question is clearly yes, as the ODIN provisioning model is
not qualitatively much different from other per-flow reser-
vation models. We believe that our work can generalize be-
yond VMs and overlays. For example, traffic monitoring
and inference could be done in the kernel and then used to
adjust routing tables.

The assumptions in Section 3.5 need to be relaxed to
lead to a more general adaptive environment that includes
VM CPU reservations [16], VM migration, forwarding, and
the overlay topology itself. Also, we have not yet incor-
porated network measurement data such as from a passive
system [33, 13]. A key challenge in our future work is to
develop a fast algorithm that can take into account all the
available information and choose among adaptation mecha-
nisms, including network reservations, to optimize applica-
tion performance.

We believe there are clear benefits to using configurable
and reservable networks in concert with adaptive overlay
network technologies. Adaptive overlays let us seamlessly

integrate new networking technologies into existing appli-
cations and into the commodity Internet.

Because VTTIF can provide a holistic view of the appli-
cation, an entire topology and traffic matrix at once instead
of just a link at a time, it should be possible for an optical
network reservation system to exploit this higher level, de-
tailed information to schedule reservations across the whole
network collectively, providing together with sophisticated
time-driven scheduling of the VMs, global communication
and computation context switches [5].

References

[1] CANARIE INC. Lighting the Path to Innovation, Annual
Technical Report, 2003 - 2004.

[2] CASANOVA, H., LEGRAND, A., AND MARCHAL, L.
Scheduling distributed applications: the SimGrid simulation
framework. In Proceedings of the third IEEE International
Symposium on Cluster Computing and the Grid (CCGrid’03)
(May 2003).

[3] CHAN, V. W. S., HALL, K. L., MODIANO, E., AND

RAUSCHENBACH, K. A. Architectures and technologies
for high-speed optical data networks. Journal of Lightwave
Technology 16, 12 (December 1998), 2146–2168.

[4] DIKE, J. A user-mode port of the linux kernel. In Proceed-
ings of the USENIX Annual Linux Showcase and Conference
(Atlanta, GA, October 2000).

[5] FELDMANN, A., STRICKER, T., AND WARFEL, T. Sup-
porting sets of arbitrary connections on iWarp through com-
minication context switches. In Proceedings of the Sym-
posium on Parallel Algorithms and Architectures (SPAA)
(1993).

[6] FERRARI, D., BANERJEA, A., AND ZHANG, H. Network
support for multimedia - a discussion of the Tenet approach.
Computer Networks and ISDN Systems 26, 10 (July 1994),
1167–1180.

[7] FIGUEIRA, S., KAUSHIK, N., NAIKSATAM, S., CHIAP-
PARIC, S. A., AND BHATNAGAR, N. Advanced reservation
of lightpaths in optical-network based grids. In Proceedings
of ICST/IEEE Gridnets (October 2004).

[8] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case
for grid computing on virtual machines. In Proceedings of
the 23rd International Conference on Distributed Computing
Systems (ICDCS 2003) (May 2003).

[9] FOSTER, I., AND KESSELMAN, C., Eds. The Grid2,
Blueprint for a New Computing Infrastructure, 2nd ed. Mor-
gan Kaufmann, 2004.

[10] GENCATA, A., AND MUKHERJEE, B. Virtual-topology
adaptation for WDM mesh networks under dynamic traffic.
IEEE/ACM Trans. Netw. 11, 2 (2003), 236–247.

[11] GERBESSIOTIS, A. V., AND VALIANT, L. G. Direct bulk-
synchronous parallel algorithms. Journal of Parallel and
Distributed Computing 22, 2 (1994), 251–267.

[12] GUPTA, A., AND DINDA, P. A. Inferring the topology and
traffic load of parallel programs running in a virtual machine
environment. In Proceedings of the 10th Workshop on Job
Scheduling Strategies for Parallel Processing (JSPPS 2004
(June 2004).

[13] GUPTA, A., ZANGRILLI, M., SUNDARARAJ, A., DINDA,
P. A., AND LOWEKAMP, B. B. Free network measurement
for adaptive virtualized distributed computing. In Submis-
sion.

[14] HOO, G., JOHNSTON, W., FOSTER, I., AND ROY, A. Qos
as middleware: Bandwidth reservation system. In Proceed-
ings of the 8th IEEE Symposium on High Performance Dis-
tributed Computing (1999), pp. 345–346.

[15] INTERNATIONAL CENTER FOR ADVANCED INTERNET

RESEARCH. http://www.icair.org/omninet/.

[16] LIN, B., AND DINDA, P. Vsched: Mixing batch and interac-
tive virtual machines using periodic real-time scheduling. In
Submission. A version of this paper is available as Technical
Report NWU-CS-05-06, Department of Computer Science,
Northwestern University.

[17] LINUX VSERVER PROJECT. http://www.linux-vserver.org.

[18] MAMBRETTI, J., WEINBERGER, J., CHEN, J., BACON, E.,
YEH, F., LILLETHUN, D., GROSSMAN, B., GU, Y., AND

MAZZUCO, M. The photonic terastream: Enabling next gen-
eration applications through intelligent optical networking
at iGRID2002. Future Generation Computer Systems 19,
6 (August 2003), 897–908.

[19] NATIONAL LAMBDARAIL. http://www.nlr.net.

[20] NETHERLIGHT. http://www.netherlight.nl.

[21] RAMASWAMI, R. Optical fiber communication: From trans-
mission to networking. IEEE Communications Magazine 40,
6 (May 2002), 138–147.

[22] SHOYKHET, A., LANGE, J., AND DINDA, P. Virtuoso: A
system for virtual machine marketplaces. Tech. Rep. NWU-
CS-04-39, Department of Computer Science, Northwestern
University, July 2004.

[23] SIMEONIDOU, D., NEJABATI, R., O’MAHONY, M. J.,
TZANAKAKI, A., AND TOMKOS, I. An optical network in-
frastructure suitable for global grid computing. In Proceed-
ings of TERENA Networking Conference (2004).

[24] SMARR, L. L., CHIEN, A. A., DEFANTI, T., LEIGH, J.,
AND PAPADOPOULOS, P. M. The OptIPuter. Commun.
ACM 46, 11 (2003), 58–67.

[25] SNELL, Q., CLEMENT, M., JACKSON, D., AND GREGORY,
C. The performance impact of advance reservation meta-
scheduling. In Proceedings of the 6th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP 2000)
(2000), pp. 137–153.

[26] SULISTIO, A., PODUVALY, G., BUYYA, R., AND THAM,
C.-K. Constructing a grid simulation with differentiated net-
work service using GridSim. Tech. Rep. GRIDS-TR-2004-
13, Grid Computing and Distributed Systems Laboratory,
University of Melbourne, Australia, December 2004.

[27] SUNDARARAJ, A., AND DINDA, P. Towards virtual net-
works for virtual machine grid computing. In Proceedings
of the 3rd USENIX Virtual Machine Research And Technol-
ogy Symposium (VM 2004) (May 2004).

[28] SUNDARARAJ, A., GUPTA, A., AND DINDA, P. Dy-
namic topology adaptation of virtual networks of virtual ma-
chines. In Proceedings of the Seventh Workshop on Lan-
guages, Compilers and Run-time Support for Scalable Sys-
tems (LCR) (November 2004).

[29] SUNDARARAJ, A., GUPTA, A., AND DINDA, P. Increas-
ing application performance in virtual environments through
run-time inference and adaptation. In Proceedings of the
14th IEEE International Symposium on High-Performance
Distributed Computing (HPDC) (July 2005). In this volume.

[30] TAYLOR, V., WU, X., GEISLER, J., LI, X., LAN, Z.,
STEVENS, R., HERELD, M., AND JUDSON, I. Proph-
esy: An infrastructure for analyzing and modeling the per-
formance of parallel and distributed applications. In Pro-
ceedings of the 9th International Symposium on High Per-
formance Distributed Computing (HPDC) (August 2000).

[31] VMWARE CORPORATION. http://www.vmware.com.

[32] WEI, J. Y. Advances in the management and control of op-
tical internet. IEEE Journal on Selected Areas in Communi-
cations 20, 4 (May 2002), 768–785.

[33] ZANGRILLI, M., AND LOWEKAMP, B. Using passive traces
of application traffic in a network monitoring system. In of
the Thirteenth IEEE International Symposium on High Per-
formance Distributed Computing (HPDC 13) (June 2004).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

