
The User In Experimental Computer Systems Research

Peter A. Dinda Gokhan Memik Robert P. Dick
Bin Lin Arindam Mallik Ashish Gupta Samuel Rossoff

{pdinda, g-memik, dickrp, b-lin, arindam, ashish, s-rossoff}@northwestern.edu
Department of Electrical Engineering and Computer Science

Northwestern University

ABSTRACT
Experimental computer systems research typically ignores
the end-user, modeling him, if at all, in overly simple ways.
We argue that this (1) results in inadequate performance
evaluation of the systems, and (2) ignores opportunities. We
summarize our experiences with (a) directly evaluating user
satisfaction and (b) incorporating user feedback in different
areas of client/server computing, and use our experiences to
motivate principles for that domain. Specifically, we report
on user studies to measure user satisfaction with resource
borrowing and with different clock frequencies in desktop
computing, the development and evaluation of user inter-
faces to integrate user feedback into scheduling and clock
frequency decisions in this context, and results in predicting
user action and system response in a remote display system.
We also present initial results on extending our work to user
control of scheduling and mapping of virtual machines in
a virtualization-based distributed computing environment.
We then generalize (a) and (b) as recommendations for in-
corporating the user into experimental computer systems
research.

Categories and Subject Descriptors
D.4 [Software]: Operating Systems; C.4 [Computer

Systems Organization]: Performance of Systems; H.5.1
[Information Systems]: User/Machine Systems (HCI)

General Terms
Human Factors, Design, Experimentation, Measurement,
Performance, Autonomic Systems

Keywords
User Comfort With Resource Borrowing, User-driven
Scheduling, User-driven Power Management, Speculative
Remote Display, Human Directed Adaptation

This work is in part supported by the NSF (awards ANI-0093221,
ANI-0301108, CNS-0347941, CNS-0551639, IIS-0613568, IIS-0536994,
CCF-0541337, CCF-0444405, and EIA-0224449), the DOE (award
DE-FG02-05ER25691 and via an ORNL subcontract), and by gifts
from VMware, Dell, and Symantec.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS 13-14 June 2007, San Diego, CA
Copyright 2007 ACM 978-1-59593-751-3/07/06 ...$5.00.

1. INTRODUCTION
Computer systems research in all of its forms has tradi-

tionally focused on the development of services and infras-
tructure to make it possible to more easily build and scale
applications, as well as to enable new kinds of applications.
The user has been kept at a considerable remove from the
systems software and hardware. We think of the user as
interacting with the application, not with the computer sys-
tem supporting the application. Although the satisfaction
that the user garners depends in large part on the decisions
made by the system, the system has only a myopic view of
the user through the application workload. While the use of
utility functions to represent the user has been proposed for
over a decade, the reality is that how well these functions
operate as a model of the user, and how well they actually
represent diverse user sets, is largely unknown.

Over the past three years, we have investigated several
computer systems problems with careful consideration and
direct analysis of the end-user. These problems are in the
context of client/server computing and include resource bor-
rowing in volunteer computing systems, scheduling of desk-
top replacement virtual machines in utility computing sys-
tems, power management in laptop computers, and latency
in remote display systems. We have also considered adap-
tation in more general distributed systems. Based on this
wide range of work, we believe that is important to advocate
the following.

1. Experimental computer systems researchers should in-
corporate user studies into the evaluation of their sys-
tems. It is true that user studies are challenging, time
consuming, often require institutional review board in-
teraction, and generally produce small data sets. How-
ever, we have repeatedly found surprising results that
would not have been apparent through typical perfor-
mance evaluation. In particular, user satisfaction with
the behavior of a system is extremely difficult to mea-
sure by proxy.

2. Experimental computer systems researchers should
consider approaches to systems problems that directly
incorporate feedback from the end-user. The system
need not be completely invisible to the end-user, and
even tiny amounts of end-user input can lead to very
different system designs that produce much improved
levels of measured user satisfaction.1

1Although the experience reports given in this paper focus
on direct explicit feedback from the user, we do not dismiss
implicit feedback. What is critical is the concept of using

1



Although we believe these two points are applicable to vir-
tually any computer system that involves human users, our
experimental work, on which we elaborate in Section 2, has
focused on systems problems encountered in client/server
systems, such as:

• Heavyweight clients that run applications locally and
have intermittent connectivity to the network to re-
trieve and synchronize files This is the common use of
laptop and desktop computers today.

• Heavyweight clients on which the user’s personal vir-
tual machine(s) can be downloaded, cached, and exe-
cuted. This is the mode of operation suggested by the
CMU/Intel Internet Suspend/Resume project [48] and
the Stanford Collective project [6].

• Desktop replacement systems in which dumb thin
clients interact through VNC [44], Remote Desk-
top [40], or similar protocols [25, 2] with multiuser
operating systems or virtual machines running in
centralized clusters. AJAX-based web applications
are somewhat similar.

• Distributed computing systems based on virtual ma-
chines. Specifically, we report on initial results in
human-directed mapping and scheduling of virtual ma-
chines in a distributed computing environment, such
as in Virtuoso [55] or VioCluster [47].

In systems such as these, as well as in “client-only” sys-
tems like PCs running Windows, there exists a tension be-
tween performance, resource use, and energy consumption
that must be resolved. Resolving this tension in an optimal
or at least acceptable way is the job of system-level mech-
anisms such as scheduling and resource management. The
system tries to choose an operating point that optimizes a
constrained function of these costs. All functions in interac-
tive systems include some notion of user satisfaction.

Current systems rely upon the following assumptions
when optimizing the configuration to meet user satisfaction
requirements:

• Users are considered to be identical with respect to
satisfaction. In other words, the system optimizes for
a canonical user, not for specific users.

• User satisfaction can be measured implicitly. The sys-
tem, in fact, optimizes for proxies of user satisfaction,
such as bounded latency and jitter, minimal power
consumption, or minimal price. Furthermore, the sys-
tem chooses how to combine the many possible metrics
of user satisfaction.

These assumptions are widely held not only within the do-
main of our experimental work, but across experimental
computer systems in general.

In our work, we have concluded that this model of user
satisfaction is simply untenable. We have found that the

user feedback to customize system behavior on a per-user
basis. We believe that explicit feedback is a powerful tech-
nique and that learning techniques can reduce the interac-
tion rate. However, if implicit feedback can produce similar
results, they are to be preferred. Notice also that explicit
feedback techniques provide a yardstick against which im-
plicit techniques can be compared.

following set of principles are important in considering the
optimization problems in client/server systems. Although
many are counterintuitive, we have strong evidence that the
following principles are correct.

1. User variation. User satisfaction with a given oper-
ating point varies dramatically between users. We
have demonstrated that user satisfaction with varying
degrees of contention or restriction of CPU, disk, and
memory resources when using common interactive
desktop applications varies considerably (Section 2.1).
Similarly, we have found that user satisfaction with
differing CPU frequencies varies dramatically (Sec-
tion 2.2).

2. User-specified performance. Users can specify their
personal metric for satisfaction as a function of system
performance. In many cases, a user is best qualified
to resolve the tension among quality metrics in a way
that satisfies the user. While users vary in satisfac-
tion, they are not ineffable. We have demonstrated
how näıve users can control their own CPU schedules
in a desktop replacement scenario to trade off price
and interactive performance (Section 2.3). Similarly,
we have demonstrated an interface for letting näıve
users control CPU frequency to tradeoff between per-
formance and power (Section 2.4).

3. User-system interface. The system software that does
optimization should provide simple user interfaces to
allow the user to explicitly indicate how well the sys-
tem is trading off the desired quality metrics. Explicit
expression of the user’s cost function is also helpful.
Sections 2.3 and 2.4 illustrate such interfaces. Sec-
tion 2.5 presents initial results on an interface (in the
form of a game) for a more complex problem: mapping
and scheduling of a collection of VMs on a set of hosts.

4. Learning. Explicit user interfaces to the system
must, over time, require decreasing interaction. They
should exploit explicit user interaction to learn user-
specific preferences while simultaneously driving
on-line tradeoffs among system quality metrics such
as performance, power consumption, and correctness.
The systems described in Sections 2.3 and 2.4 include
simple learning techniques that reduce the amount
of explicit user input. We also report briefly on our
work evaluating the prospects for speculative remote
display systems (Section 2.6), which shows how more
costly learning algorithms can be fruitfully employed
to predict user actions and responses.

We elaborate on these principles in Section 3, and touch on
how they relate to our experimental work in the relevant
sections.

Building on the experiences and principles, we next argue
that using user studies to evaluate systems, and direct user
input to inform them, can be generalized over experimen-
tal computer systems research. We then provide advice for
experimenters who want to apply these ideas (Section 4).
Section 5 concludes the paper.

2



(a) GUI

(b) Discomfort button

Figure 1: User comfort with resource borrowing in-

terface.

2. EXPERIENCE
We have practiced what we preach, (a) using user stud-

ies to evaluate systems, and (b) using direct user input to
inform systems. In the following, we summarize the results
(and cite the original work for those interested in learning
more) from six distinct projects, all emerging from the do-
main of client/server systems, and more general distributed
systems. Our goal is to illustrate that our claims about the
efficacy of (a) and (b) hold in diverse areas. The results
also give examples of the principles we have specifically dis-
tilled for the client/server environment, which we elaborate
on further in Section 3.

2.1 Measuring and understanding
user comfort with resource borrowing

Many computers are highly under-utilized [41, 10, 1], a
fact that many widely-used systems rely on to harvest spare
resources for other purposes, a technique we refer to as
resource borrowing. Examples in scientific computing in-
clude Condor [33, 16], Entropia [8], SETI@Home [53], Pro-
tein Folding at Home [26], DESChall [9], and the Google
Toolbar [18]. Such systems are deployed on hundreds of
thousands (SETI@Home) to millions (Google) of computers.
The definition of “spare” in these systems is extremely con-
servative because the foreground user can turn the sharing
systems off if they become irritating. For example, the de-
fault for both Condor and SETI@Home is to run only when
the screen saver is on and there is no other significant load
on the machine. The assumption is that resource borrowing
systems must place few restrictions on the resources pro-
vided to the interactive user when the user is active. But is
this true? How restricted can an interactive user’s resources
become before causing discomfort?

To address this question, we conducted the first-ever in-
depth study of user comfort with resource borrowing [20,
19]. We provided a qualitative and quantitative analysis of
direct measurements of user comfort with controlled CPU,
disk, and physical memory contention. In essence, the user

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P
ro

b

Contention Level ( DfCount=295, Excount=47, f_d=0.862)

CDF for CPU feedback values - ALL contexts

Exhausted Region

Discomfort Region

Prob

(a) CPU

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ro

b

Contention Level ( DfCount=25, Excount=96, f_d=0.206)

CDF for Mem feedback values - ALL contexts

Exhausted Region

Discomfort Region

Prob

(b) Memory

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P
ro

b

Contention Level ( DfCount=47, Excount=94, f_d=0.333)

CDF for Disk feedback values - ALL contexts

Exhausted Region

Discomfort Region

Prob

(c) Disk

Figure 2: User comfort with resource borrowing:

CDF of discomfort with resource contention. Win-

dows XP desktop.

is faced with an increasing degree of resource contention
until they finally press a “discomfort button” (Figure 1)
The carefully controlled study examined 33 users operating
word processors, presentation software, web browsers, and
games.

Figure 2 gives examples of our quantitative measure-
ments. Our papers go into much more depth. The figures
show CDFs for CPU, memory, and disk aggregated over

3



all the tasks in our study (word processing with Microsoft
Word, presentation creation with Microsoft Powerpoint,
web browsing with Internet Explorer, and game-playing
with Quake, a first person shooter game). The horizontal
axis is the level of contention for each resource. The vertical
axis is the cumulative fraction of users experiencing dis-
comfort. As the level of borrowing increases, interactivity
is increasingly likely to be affected. This is the discomfort
region. Some users do not experience discomfort in the
range of levels explored. We refer to this as the exhausted
region. A run is a controlled buildup of contention for a
given user, application, and resource that either ends in the
user pressing the button at or after a high contention level is
reached. There is also some probability that a user will feel
discomfort even when no resource borrowing is occurring.
We introduced blank runs in which no contention is applied
to measure this effect. This background discomfort is the
noise floor.

Our study addressed many aspects of user comfort with
resource borrowing and their implications. However, the
most important result, which can readily be seen in the data
in Figure 2, is the high variation. This variation is largely
accounted for by two dominant factors: the application and
the user. Obviously in a real desktop environment, it is the
user who is the independent factor, as it is the user who
chooses the application to run. User variation within an
application is also very large.

2.2 Measuring and understanding
user comfort with lower clock frequencies

Having seen that there is tremendous variation in user tol-
erance for restrictions on CPU, disk, and memory resources,
and its implications for resource borrowing systems, consider
now a more prosaic context: power management in laptop
computers. On the processors used in these machines, the
operating system can change the clock frequency (and corre-
sponding voltage) to trade off power consumption and per-
formance. Similar to resource borrowing systems, most soft-
ware (such as the Windows Dynamic Voltage and Frequency
Scaling (DVFS) algorithm) makes the assumption that once
any load is placed on the CPU (e.g., the user does anything),
the frequency should be maximized. But is this true?

To understand the variation in user tolerance for differing
frequencies (on an IBM ThinkPad T43 running Windows
XP), we conducted a small (n = 8) randomized user study,
comparing four processor frequency strategies including dy-
namic, static low frequency (1.06 GHz), static medium fre-
quency (1.33 GHz), and static high frequency (1.86 GHz).
The dynamic strategy is the default DVFS policy used in
Windows XP. Our target processor has a maximum fre-
quency of 2.13 GHz. We allowed the users to acclimatize to
the full-speed performance of the machine and its applica-
tions and then had them create a presentation (Powerpoint),
watch an animation (Shockwave), and play a game (FIFA
Soccer). Users verbally ranked their experiences after each
task/strategy pair on a scale of 1 (discomfort) to 10 (very
comfortable).

A detailed description of the study and its results are
available elsewhere [38, 39, 32], but we summarize the salient
points here. Figure 3 illustrates the results of the study in
the form of overlapping histograms of the participants’ re-
ported comfort level for each of four strategies. Consider
Figure 3(a), which shows results for the PowerPoint task.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r 
co

u
nt

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(a) Presentation

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r 
co

u
n

t

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(b) Animation

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r 
co

u
n

t

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

(c) Game

Figure 3: User comfort with lower clock frequencies:

typical Windows laptop.

The horizontal axis displays the range of comfort levels al-
lowed in the study and the vertical axis displays the count
of the number of times that level was reported. The other
graphs are similar.

As one might expect, user comfort with any given strat-
egy (or frequency in the case of the three static strategies)
is highly dependent on the application. More importantly,
however, is that comfort with given strategy is strongly user-
dependent. For any given strategy, there is a considerable
spread in the reported comfort levels. Some users will be
completely happy with a low frequency even in a demand-

4



(a) GUI (b) Joystick

Figure 4: User-driven virtual machine scheduling.

ing application like a game, while others will be displeased
with anything less than the highest frequency for even the
most undemanding application.

2.3 User-driven scheduling
In the Virtuoso2 project [49, 55], we seek to develop tools

and techniques for distributed computing environments
based on the use of virtualization. One application of
Virtuoso is a desktop replacement scenario in which a thin
client interacts with a virtual machine (VM) running on a
remote server. A natural question is how should the user’s
VM be scheduled on the server? Clearly we seek to keep
the interactive user happy while minimizing his utilization
of the server to leave room for more VMs.

We have demonstrated that it is feasible to make effec-
tive use of direct user interaction in the scheduling process;
the user can guide the scheduling process to a solution that
balances user comfort and the resource use. Because the
resources needed to keep a user happy are highly dependent
on the application and the user (Section 2.1), we believe
user-specific adaptation is essential.

We have designed, implemented, and evaluated two
schemes for incorporating direct user interaction in schedul-
ing virtual machines (VMs) within the Virtuoso system. The
first extends the “discomfort button” feedback mechanism
of the user comfort study, and is discussed elsewhere [28].

Our second scheme [30, 31] uses the periodic real-time
model. We have developed a user-level scheduling tool [29]
that does earliest deadline first (EDF) scheduling of periodic
tasks [34, 35], letting us run a VM for a given slice within
a period of time. We make the period and slice directly
configurable by the user through a straightforward human
interface: a precision non-centering joystick. The software
interface shows the user the current efficiency of their VM
(% of allocated cycles actually being used) and the price
(linear function of the utilization (slice/period)). Figure 4
illustrates the interface.

We ran a comprehensive user study, described in detail
in the cited papers, in which the 18 participants used the
interface with the goal of finding a comfortable setting of
lowest cost while they used a range of Windows applications.
We found that almost all users felt that they were able to

2http://virtuoso.cs.northwestern.edu

find a comfortable setting, as well as a comfortable setting
that they believed was of lowest cost.

Figure 5 summarizes user responses from our study. For
each task, the user was asked to find a comfortable setting
(I Comfort), to find a comfortable setting of the lowest pos-
sible cost (II Comfort+Cost), and to repeat the latter in
a deceptive context to eliminate the obvious bias towards
choosing a low cost, but uncomfortable setting (III Com-
fort+Cost+External). The results for II and III are virtu-
ally identical. The upshot is that the vast majority of users,
even näıve users, are able to quickly understand the control
mechanism and use it to find comfortable schedules that
balance comfort and cost.

We have studied the statistics of the costs of the schedule
that the users chose, and the amount of time they required
to find an appropriate schedule. Our first principle, that
there is a wide variation in user satisfaction with a given
operating point, is reflected in the wide variation in the costs
of the schedules that users chose. The majority of users were
able to find a setting that makes them comfortable, but
there wasn’t just one setting. The time for a user to find a
reasonable schedule is, on average, quite small (< 1 minute),
has little variation, and is likely to decline even further as
a user becomes more familiar with the system. Our system
is able to use a small amount of direct human interaction
to help a diverse range of users find a satisfactory schedule.
As far as we are aware, this was the first ever demonstration
of the principle of using direct human interaction to inform
and guide a low-level scheduling process.

2.4 User-driven frequency scaling
Dynamic Voltage and Frequency Scaling (DVFS) is a

widely used technique for controlling power and energy use
in modern processors. These processors allow the dynamic
selection of clock frequency and voltage. Reducing clock
frequency reduces power in approximately linear proportion,
while decreasing voltage decreases it in quadratic propor-
tion. Further, the lowest voltage at which the processor can
reliably run depends on the clock frequency, with higher
frequencies requiring higher voltages. DVFS techniques
typically use event-driven algorithms to set clock frequency,
and then set voltage based on the chosen frequency setting.

Existing DVFS techniques ignore the user, assuming that
CPU utilization or the OS events prompting it are sufficient
proxies. A high CPU utilization leads to a high frequency
and high voltage, regardless of the user’s satisfaction or ex-
pectation of performance. To remedy this limitation, we de-
veloped User-Driven Frequency Scaling (UDFS), a technique
that uses direct user feedback to drive an online control al-
gorithm which determines the processor frequency. UDFS
automatically adapts OS power management to user prefer-
ences. Extensive details on UDFS (and a companion tech-
nique not used here, process-driven voltage scaling) can be
found elsewhere [38, 39, 32].

The effect of processor frequency is directly visible to the
end-user as it determines the resulting performance. There
is considerable variation among users with respect to the
satisfactory performance level for a given workload mix, as
we have illustrated in Section 2.1, and for a given workload
mix and clock frequency combination, as illustrated in Sec-
tion 2.2. We exploit these variations to customize frequency
control policies dynamically to individual users.

To investigate the feasibility of UDFS, we developed two

5



Task Sub-task Question Yes No NA Yes/Total 95% CT 

Do you feel you are familiar with the performance of this computer? 18 0 0 1 (1,1) Adaptation I 
Are you comfortable with these applications? 17 1 0 0.94 (0.84, 1.05) 
Do you feel that you understand the control mechanism? 18 0 0 1.00 (1,1) 

Acclim. 

Adaptation II 
Do you feel that you can use the control mechanism? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task?  17 1 0 0.94 (0.84, 1.05) I Comfort 
Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 
Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  
Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 
Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1,1) 

Word 

III Comfort+Cost+Ext 
Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort 
Were you able to find a setting that was comfortable? 18 0 0 1.00 (1,1) 
Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  
Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.84, 1.05) 

III Comfort+Cost+Ext Did you find that the joystick control was understandable in this task? 16 1 0 0.89 (0.74, 1.03) 

Powerpoint 

 Were you able to find a setting that was comfortable? 17 1 0 0.94 (0.70, 1.08) 

Did you find that the joystick control was understandable in this task? 16 2 0 0.89 (0.74, 1.03) I Comfort 
Were you able to find a setting that was comfortable? 13 4 1 0.72 (0.52, 0.93) 
Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  
Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 
Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) 

Web 

III Comfort+Cost+Ext 
Were you able to find a setting that was comfortable? 16 1 1 0.89 (0.74, 1.03) 

Did you find that the joystick control was understandable in this task? 18 0 0 1.00 (1, 1) I Comfort 
Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 
Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05)  II Comfort+Cost  
Were you able to find a setting that was comfortable? 14 3 1 0.78 (0.59, 0.97) 
Did you find that the joystick control was understandable in this task? 17 1 0 0.94 (0.84, 1.05) 

Game 

III Comfort+Cost+Ext 
Were you able to find a setting that was comfortable? 16 2 0 0.89 (0.74, 1.03) 

 
Figure 5: Summary of user responses in study of user-driven scheduling of interactive virtual machines.

schemes to control the CPU frequency by considering direct
user feedback. Both of these schemes try to find the ideal
operating point by reducing frequency until user feedback
is provided via a button press. UDFS1 is an adaptive al-
gorithm that can be viewed as an extension/variant of the
TCP congestion control algorithm [51, 59, 4, 14]. UDFS2,
on the other hand, tries to find the lowest frequency at which
the user feels comfortable and then stabilize there. For each
frequency level ti possible in the processor, we assign an in-
terval ti, the time for the algorithm to stay at that level.
If no user feedback is received during the interval, the algo-
rithm reduces the frequency by one level. If a user expresses
irritation, the interval for the corresponding control level is
increased.

To investigate the impact of UDFS schemes, we performed
a study with 20 users. The user study took around 45 min-
utes for each user, during which time each user operated
a laptop running three different applications using the na-
tive Windows DVFS, UDFS1, and UDFS2. The laptop was
connected to a National Instruments 6034E data acquisition
board attached to the PCI bus of a host workstation run-
ning Linux, enabling power measurement. For the three ap-
plications studied (Shockwave, FIFA, and Powerpoint), the
power consumption of the system can be reduced by 22.1%,
averaged across all users.

In addition to this analysis, we have measured the static
power consumption of the CPU by monitoring its frequency.
The static power consumption results are summarized in
Figure 6, which presents both individual user results and
average results for UDFS1 and UDFS2 for three different

applications. The vertical axis show the percentage improve-
ment for power over the Windows native DVFS scheme. On
average, the power consumption can be reduced by 24.9%
over existing DVFS scheme for all three applications using
the UDFS2 algorithm.

Similar to the results for user-driven scheduling, the re-
sults for user-driven frequency scaling illustrate the utility of
having even a small amount of user feedback within systems
software.

2.5 User-driven scheduling of collections of
virtual machines

We are currently working to extend the work described
in Section 2.3 to the more general forms of adaptation op-
timization problems that occur in distributed and parallel
systems like Virtuoso [56, 57, 54], particularly those which
are difficult for users to formalize. The initial work [27]
uses game-like user interfaces to let users optimize the per-
formance of collections of virtual machines by manipulating
their mappings to hosts and their schedules.

Figure 7 illustrates a preliminary user interface for the
VM scheduling game (mapping is fixed). Here, the user is
running a collection of VMs that contain a bulk synchronous
parallel [17] application (although the user does not know
this). The interface allows the user to manipulate the peri-
odic real-time schedule of each VM by moving its represen-
tation in the control area. The goal is to either maximize the
efficiency of the application within a bounded CPU share.
The current and historical efficiency is shown in the first
target area and the history area. The total computation is

6



-15

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(a) PowerPoint

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(b) 3D Shockwave

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

UDFS1 UDFS2

(c) FIFA Game

Figure 6: UDFS: Percentage power improvement

over Windows DVFS. The horizontal axes indicate

individual users, and the mean. The vertical axes

are percentage improvements.

shown in the second target area, along with a target line.
Figure 8 shows a preliminary result for a small user study

where the game was parameterized for four VMs, each
mapped to a distinct host, and the goal of maximizing
efficiency within a bounded amount of CPU. The figure is a
histogram where the horizontal axis is the efficiency and the
vertical axis is the number of users. Users are differentiated
by whether they claimed familiarity with distributed and
parallel systems (“Yes”) or not (“No”). The maximum
possible efficiency is also shown. It is not 100% due to
communication. The effects of random scheduling decisions
are also shown. The upshot is that by playing the game,
most users can schedule this collection of VMs with at least
some efficacy.

Although the results for the VM scheduling and mapping
games are still extremely preliminary, they suggest that it is
possible to develop user interface systems for more complex
systems-level decision-making than those described in the
previous sections.

2.6 Prospects for speculative remote display
Remote display systems such as VNC [44], Windows

RDP [40, 45], and others allow the interactive, graphi-

Target Area 1

History Area

Target Area 2

Control Area

Figure 7: Preliminary user interface for the VM

scheduling game.

4 VMs with 1-to-1 VM-to-host mapping

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] 0.925

Average global efficiency [0.0 - 1.0]

N
u

m
b

er
 o

f 
u

se
rs

Users who answered NO

Users who answered YES

Offiline simulation with random input

Offline simulation with best schedules

Figure 8: Example user study results for the VM

scheduling game.

cal use of a remote computer or virtual machine. At its
simplest, such a system can be thought of abstractly as
a framebuffer on the client on which the server draws.
User events (keystrokes, mouse movements, etc.) flow from
client to server, and screen events (commands to update
the framebuffer) flow from server to client. Unfortunately,
current remote display systems, even current research sys-
tems like THINC [2], suffer when the network latency is
high and/or variable [25].

We are exploring extending remote display systems in line
with the client/server principles given in the introduction.
In our model, the client predicts screen events based on past
user and screen events. If the predicted screen events re-

7



Client Server
Keystrokes, Mouse ops

Bitmaps, Color tables, Blit
ops, Ordering ops, Drawing 
ops, etc

Cache

(a) RDP

Client Server
Keystrokes, Mouse ops

Speculative ops and parameters

Cache

User
Event
Predictor Screen

Event
Predictor

CompareUndo Requests, 
Bitmaps, Color tables

Undo Log

Bitmaps, 
Color 
tables, 
Blit ops, 
Ordering 
ops, 
Drawing 
ops, etc

User Sensitivity

(b) Speculative RDP

Figure 9: RDP and its proposed speculative variant.

fer to locally cached constructs (e.g., bitmaps), the client
speculatively executes them, undo-logging them as it goes.
Most user events, especially those corresponding to fine-
grain interactions like typing and menu operation, have their
responses computed locally, avoiding the round-trip time.
The speculatively executed screen events are compared with
those being returned by the server. A difference results in
the undo log being used to restore the display to the point
preceding the incorrectly executed event, at which point the
actual event is executed. The extent of such repair oper-
ations and their frequency depends on how aggressive the
predictor is, which will be set by the user. Figure 9(a) shows
the current structure of an RDP client and server in simpli-
fied form, while Figure 9(b) illustrates the structure of a
speculative variant of RDP.

Although we have not yet completed a speculative re-
mote display prototype, we have demonstrated the excellent
prospects of the concept. We instrumented the open-source
rdesktop [7] client for the the RDP protocol to allow us to
capture traces of user events and screen events (including
drawing commands like bit blit, text drawing, line drawing,
etc) that pass between client and server. We then ran a
study in which four randomly selected participants in our
resource borrowing study (Section 2.1) repeated their tasks.
This gave us trace data for word processing, presentation
creation, web browsing, and game playing.

We studied the prediction of the user and screen event
streams using simple, state-limited, k-th order Markov mod-
els, configured simply to predict the next event. The model-
ing was extremely simple, treating both the type of an event
and its parameters collectively as a string. Our preliminary
work only examined predicting the next event. Nonetheless,
we were extremely surprised to find that we were able to
predict extremely well, as shown in Figure 10. Here, we are
showing the percentage of correct predictions as a function

of k, given the current event has been seen at least once
before. More detailed results are available elsewhere [46].

3. PRINCIPLES FOR THE
CLIENT/SERVER CONTEXT

We now elaborate on the principles for optimization prob-
lems within the client/server context that we summarized
in the introduction, building on the experiences reported in
Section 2, and on the results and experiences of others.

User variation: There is considerable variation in user
satisfaction with any given operating point. This principle is
directly supported by the evidence in Sections 2.1 and 2.2.
It is also born out by work studying user annoyance with
interfaces [22, 43] and latency tolerance [23, 12] within the
human-computer interaction community. Other results in-
clude limited user-level customization of GUIs [37, 11]. The
systems community has used latency to evaluate operating
systems [13], and developed initial models for interactive
user workload [3].

User-specified performance: The user can and should in-
form the systems software of his satisfaction with the current
delivered performance, which results from the current operat-
ing point. This principle follows from the first principle. By
adapting to the individual user, systems software can choose
an operating point that increases user satisfaction and most
efficiently uses available resources. We first explained this
concept in an HPDC 2004 paper [20]. In Sections 2.3 and 2.4
we illustrated two specific systems that directly incorporate
user-specified performance or satisfaction. The concept has
also begun to see some interest within the adaptive sys-
tems community [50], and recent power management work
has sought to support per-user information to some extent.
In the power management community, measured response
times are typically used as a proxy for the user [36, 60] and
in modern systems like Vertigo [15] these measurements can
be inferred from unmodified applications and optimized in
the context of a per-user profile.

Our notion of user-specified performance differs from that
proposed in prior work in two fundamental ways. First, we
interact directly with users at run-time to measure their sat-
isfaction with performance. Second, we do not decouple user
perceivable measurements from satisfaction. One can argue
that a multi-step process exists: operating point → OS-
level performance metrics (e.g., message timings) → user-
level performance metrics (e.g., latency) → user satisfaction.
Our principle is simpler: operating point → user satisfac-
tion. As a consequence, it eliminates numerous sources of
error from the control–feedback loop connecting user and
operating point control system.

User-system interface: The interface through which the
user interacts with the systems software must be simple, el-
egant, and understandable even by näıve users. Because the
user is to be involved in the online systems-level decision-
making that determines performance and correctness, ease
of use is paramount. Note that we are asking the user to
provide input to the lowest level operating system services.
Sections 2.3 and 2.4 gave specific examples of such inter-
faces, as well as their evaluation. While the topic of user
interface design and evaluation is a deep and complex one,
it is important to note that any effective user interface for
systems software will have to be very simple and thin—the
systems interface must minimally distract from the applica-

8



(a) User Events (b) Screen Events

Figure 10: Performance of simple, 1000 state, k-th order Markov model in RDP.

tion interface. This reduces the design space considerably,
and makes evaluation easier. In cases where applications are
themselves non-interactive, the user interface for this mode
of operation can be much thicker (Section 2.5).

Learning: The interface through which the user interacts
with the systems software must learn user actions and pref-
erences so that interactions become rarer over time. The
importance of learning, the final principle, follows also from
the interface requirements. Even an elegant interface that is
understandable by näıve users would be intrusive if the user
had to interact with it frequently. We believe it is necessary
to develop and apply machine learning techniques to, over
time, learn the individual user’s operating point → satisfac-
tion characteristics. Sections 2.3 and 2.4 illustrated systems
that use very simple learning techniques to reduce inter-
action rates. Section 2.6 illustrated the use of more com-
plex and expensive techniques to predict user-visible system
events. Learning techniques and interface designs interact in
complex ways. We are only at the first stages at determining
just how parsimoniously we can use the user’s attention.

4. GENERALIZATION AND ADVICE
Although the experiences we reported (Section 2) and the

principles we drew from them (Section 3) are specific to
the optimization problems in the client/server environment,
we believe that it is possible to generalize from them to the
broader context of experimental computer systems research.
In particular, to reiterate the second paragraph of the intro-
duction, we advocate that researchers should (1) incorpo-
rate user studies into the evaluation of their systems, and
(2) consider approaches to systems problems that leverage
direct input from the user. In the following, we first elab-
orate on these two themes, and then offer advice to those
who would like to operationalize them in their own work.

4.1 Generalizing
In our experience reports, we focused on user satisfaction

in the client/server context. Of course, user satisfaction,
and the idea of explicitly eliciting it as feedback from the
end-user, can be broadly applied. Even for systems that
operate outside the timescale of human attention, we can
collect trace information, compute metrics on it, and elicit
user satisfaction with those metrics.

A key finding that we are sure resonates well beyond
the client/server context is that of considerable variation

among users in their satisfaction with any given configu-
ration choice. If there is any single take-away message, it
is that systems researchers need to consider the individual
user.

For those systems that can be modeled as, or include a
control system element, the individual user can be thought
of in at least three ways. First, the user can provide the
“set point” for the system. Second, the user can provide
the “error signal” of the system. The latter is essentially
the approach we have taken in the reported work on power
management (Section 2.4). Finally, the user can be a part
of, or the whole of the control mechanism itself, determining
not only when the “error” is too large, but also determining
the configuration that will reduce it. It is this model that we
used in the reported work in scheduling VMs (Section 2.3)
and in the broader adaptation problem (Section 2.5).

Regardless of how or even whether explicit or implicit user
feedback is incorporated into systems, it is clear that as sys-
tems increasingly face users, it is vital that they be evalu-
ated, at least in part, through user studies.

4.2 Advice
Evaluating a system via a user study is a different chal-

lenge from evaluating it using a synthetic or trace workload
and straightforwardly visible metrics. Having done a num-
ber of such studies so far, we can offer the following advice:

• You should engage an expert in psychological studies
or human computer interaction. Effective user stud-
ies require extremely careful controls and structure
because human subjects approach an experiment at
many different cognitive levels, and independent goals.
At minimum, refer to the literature (for example, [42,
5, 24]). The advice of Don Norman, Benjamin Watson,
and Bruce Gooch was very important to our work.

• Institutional review boards (IRBs) may have to be
engaged depending on the nature of the user study.
When explaining our work to colleagues, we often have
heard expressed the fear that IRB involvement could
become a colossal time sink. While this is possible, it
is important to note a few things. First, basic IRB
certification is relatively standardized and quite easy
to acquire. Second, user studies in the systems context
are generally classified as social science-based studies,
which require considerably less paperwork than phys-
ical, interventionist studies, which is where most of

9



the horror stories lie. Third, the paperwork required
for IRB review, although tedious, tends to be quite
reusable. Finally, in many cases, because a user study
in the systems context is patently unlikely to lead to
psychological damage, full review is unnecessary.

• User studies are invariably much smaller than the
kinds of evaluations that we, as systems researchers,
are familiar with. This limits the range of what can
be studied, and it requires that small sample size,
robust statistics [21], or full data reporting, are nec-
essary. In our experience up to now, the effects that
are measured have been quite large, which makes it
possible to draw strong conclusions despite the small
sample size.

• Although it is nearly impossible to engage a random
subject population, there are techniques, like subsam-
pling, that can be used to estimate selection biases.

• It is vital, especially when measuring user satisfaction,
to differentiate between the actual effect and the back-
ground effect. The measured satisfaction (through sur-
veying, level eliciting, etc) integrates satisfaction with
your system with the user’s general satisfaction. The
equivalent of a placebo is needed to differentiate the
two.

• It is vital that a user study be double-blinded to the
greatest extent possible. Users and proctors can inad-
vertently produce overly optimistic or pessimistic be-
haviors if they can infer the “desired” outcome of the
test.

• Ideally, we want to correlate systems-level quantities
that can be easily measured with user study results
in order to validate the latter. However, this is of-
ten difficult, if not impossible, due to the consider-
able variation in user responses. For example, as we
have seen, user satisfaction with particular level of
resources tends to have tremendous variation (Sec-
tion 2.1). Even when we do not have a system-level
quantity to measure, we can use the technique of de-
ception [52] to convince the user that we do. For exam-
ple, in the results of Section 2.3, we video-taped users
in some tests, and claimed that a fictitious psychology
collaborator would analyze the video tape to produce
an independent assessment of user satisfaction. Com-
paring results in which we deceive the user into this
belief, with those where we do not, helps us discount
the possibility that the user is being uncooperative.

• Eliminate all user-visible extraneous information dur-
ing any user study. While it is tempting for us to
build interfaces that provide as much detail as the user
wants, this can dramatically skew results. For exam-
ple, in the preparatory work for the study described in
Section 2.1, we noticed users on one of our two identi-
cal test machines were generally more irritated by disk
bandwidth borrowing. It turned out that this machine
had a visible hard disk access light, while the other did
not.

Our second claim is that systems researchers should con-
sider using direct user input in their systems. We have the
following advice regarding the interfaces for doing so.

• We have generally found that “out-of-band” input de-
vices tend to work best. By out-of-band, we mean that
we add input hardware or use existing input hardware
that is not used for any other purpose. The interface
to the system software will (ideally) be infrequently
used. If we layer it on top of an existing input device,
the user has to essentially perform a “cognitive con-
text switch” to use it, unlearning the normal purpose
of the interface.

• It is tempting to ask for a lot of input (in terms of fre-
quency or dimensionality or both) from the user, but
this should be avoided. Use as little input as possible,
and evaluate the tradeoff between the amount of input
and its utility very carefully.

• Similarly, the output portion of the interface should be
as thin as possible. In some cases, it can be nonexistent
as it is the performance of the system that serves as
implicit output.

• It is important to understand, and account for, the fact
that explicit user input can itself be a source of user
dissatisfaction. When measuring the efficacy of a sys-
tem based on explicit user feedback, the experimenter
must have an independent gauge of this source.

• For some systems and some users, it may be possible
to eliminate all user input through the use of implicit
measures of the user, for example by recognizing pat-
terns in system-level events [58]. Note that explicit
feedback systems can be used as a yardstick in eval-
uating implicit ones. Furthermore, these are not ei-
ther/or propositions. There is a spectrum that ranges
from explicit feedback, to explicit feedback with learn-
ing, to implicit feedback. The latter can fall back on
the former.

5. CONCLUSION
We have advocated that experimental computer systems

researchers should (a) incorporate user studies into the eval-
uation of our systems, and (b) consider approaches to sys-
tems problems that draw on feedback or other input from
the end-user. Through our experiences in applying these
ideas in six different systems projects in client/server com-
puting and related areas, we illustrated how the ideas can
help us find and exploit new, and often surprising, opportu-
nities and principles. Two particular principles we derived is
that there is considerable variation in user satisfaction with
any given operating point, and that this variation can be
exploited through interfaces that use direct user feedback
about satisfaction. We then generalized our results and of-
fered advice to practitioners who want to apply (a) and (b)
to their own systems and domains.

6. REFERENCES
[1] Anderson, T. E., Culler, D. E., and Patterson,

D. A. A case for networks of workstations. IEEE
Micro (February 1995).

[2] Barratto, R., Kim, L., and Nieh, J. Thinc: A
virtual display architecture for thin-client computing.
In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP) (October 2005).

10



[3] Bhola, S., and Ahamad, M. Workload modeling for
highly interactive applications. In ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (1999), pp. 210–211.
Extended version as Technical Report GIT-CC-99-2,
College of Computing, Georgia Tech.

[4] Brakmo, L. S., O’Malley, S. W., and Peterson,

L. L. TCP Vegas: New Techniques for Congestion
Detection and Avoidance. In Proceedings of the
Conference on Communications Architectures,
Protocols and Applications (1994), pp. 24–35.

[5] Card, S., Moran, T., and Newell, A. The
Psychology of Human-Computer Interaction. Lawrence
Erlbaum Publishers, 1986.

[6] Chandra, R., Zeldovich, N., Sapuntzakis, C.,

and Lam, M. The collective: A cache-based system
management architecture. In Proceedings of the 2nd
Symposium on Networked Systems Design and
Implementation (NSDI) (May 2005).

[7] Chapman, M. rdesktop: A remote desktop protocol
client for accessing windows nt terminal server.
http://www.rdesktop.org.

[8] Chien, A. A., Calder, B., Elbert, S., and

Bhatia, K. Entropia: architecture and performance of
an enterprise desktop grid system. Journal of Parallel
and Distributed Computing 63, 5 (2003), 597–610.

[9] Curtin, M., and Dolske, J. A brute force search of
DES keyspace. ;login: (May 1998).

[10] Dinda, P. A. The statistical properties of host load.
Scientific Programming 7, 3,4 (1999). A version of this
paper is also available as CMU Technical Report
CMU-CS-TR-98-175. A much earlier version appears
in LCR ’98 and as CMU-CS-TR-98-143.

[11] Dourish, P. Evolution in the adoption and use of
collaborative technologies.

[12] Embley, D. W., and Nagy, G. Behavioral aspects
of text editors. ACM Computing Surveys 13, 1
(January 1981), 33–70.

[13] Endo, Y., Wang, Z., Chen, J. B., and Seltzer,

M. Using latency to evaluate interactive system
performance. In Proceedings of the 1996 Symposium on
Operating Systems Design and Implementation (1996).

[14] Fall, K., and Floyd, S. Simulation-based
comparisons of Tahoe, Reno and SACK TCP.
SIGCOMM Computer Communication Review 26, 3
(1996), 5–21.

[15] Flautner, K., and Mudge, T. Vertigo: Automatic
Performance-setting for Linux. SIGOPS Oper. Syst.
Rev. 36, SI (2002), 105–116.
http://doi.acm.org/10.1145/844128.844139.

[16] Frey, J., Tannenbaum, T., Foster, I., Livny, M.,

and Tuecke, S. Condor-g: A computation
management agent for multi-institutional grids. In
Proceedings of the 10th International Symposium on
High Performance Distributed Computing (HPDC
2001) (2001), pp. 55–66.

[17] Gerbessiotis, A. V., and Valiant, L. G. Direct
bulk-synchronous parallel algorithms. Journal of
Parallel and Distributed Computing 22, 2 (1994),
251–267.

[18] Google Corporation. Google compute.
http://toolbar.google.com/dc/.

[19] Gupta, A., Lin, B., and Dinda, P. A framework
and toolkit for understanding user comfort with
resource borrowing. Tech. Rep. NWU-CS-04-28,
Department of Computer Science, Northwestern
University, February 2004.

[20] Gupta, A., Lin, B., and Dinda, P. A. Measuring
and understanding user comfort with resource
borrowing. In Proceedings of the 13th IEEE
International Symposium on High Performance
Distributed Computing (HPDC 2004) (June 2004).

[21] Huber, P. Robust Statistics. Wiley and Sons, 2003.

[22] Klein, J. T. Computer response to user frustration.
Master’s thesis, Massachusetts Institute of
Technology, 1999.

[23] Komatsubara, A. Psychological upper and lower
limits of system response time and user’s preferance
on skill level. In Proceedings of the 7th International
Conference on Human Computer Interaction (HCI
International 97) (August 1997), G. Salvendy, M. J.
Smith, and R. J. Koubek, Eds., vol. 1, IEE,
pp. 829–832.

[24] Kuniavsky, M. Observing the User Experience: A
Practioner’s Guide to User Research. Morgan
Kaufmann, 2003.

[25] Lai, A., and Nieh, J. Limits of wide-area thin-client
computing. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems (2002).

[26] Larson, S. M., Snow, C. D., Shirts, M., and

Pande, V. S. Folding@home and genome@home:
Using distributed computing to tackle previously
intractable problems in computational biology. In
Computational Genomics, R. Grant, Ed. Horizon
Press, 2002.

[27] Lin, B. Human-directed adaptation. Thesis Proposal,
Department of Electrical Engineering and Computer
Science, Northwestern University, October 2005.

[28] Lin, B., and Dinda, P. User-driven scheduling of
interactive virtual machines. In Proceedings of the
Fifth International Workshop on Grid Computing
(November 2004).

[29] Lin, B., and Dinda, P. Vsched: Mixing batch and
interactive virtual machines using periodic real-time
scheduling. In Proceedings of ACM/IEEE SC
(Supercomputing) (November 2005).

[30] Lin, B., and Dinda, P. Putting the user in direct
control of cpu scheduling. Tech. Rep.
NWU-EECS-06-07, Department of Electrical
Engineering and Computer Science, Northwestern
University, July 2006.

[31] Lin, B., and Dinda, P. Towards scheduling virtual
machines based on direct user input. In Proceedings of
the 1st International Workshop on Virtualization
Technology in Distributed Computing (VTDC) (2006).

[32] Lin, B., Mallik, A., Dinda, P., Memik, G., and

Dick, R. Power reduction through measurement and
modeling of users and cpus: Summary. In Proceedings
of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems
(June 2007).

[33] Litzkow, M., Livny, M., and Mutka, M. W.

Condor — a hunter of idle workstations. In

11



Proceedings of the 8th International Conference of
Distributed Computing Systems (ICDCS ’88) (June
1988), pp. 104–111.

[34] Liu, C. L., and Layland, J. W. Scheduling
algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 20, 1 (January
1973), 46–61.

[35] Liu, J. Real-time Systems. Prentice Hall, 2000.

[36] Lorch, J. R., and Smith, A. J. Using User Interface
Event Information in Dynamic Voltage Scaling
Algorithms. In Technical Report UCB/CSD-02-1190,
Computer Science Division, EECS, University of
California at Berkeley, August (2002).
citeseer.ist.psu.edu/lorch03using.html.

[37] MacLean, A., Carter, K., Lovstrand, L., and

Moran, T. User-tailorable systems: pressing the
issues with buttons. In CHI ’90: Proceedings of the
SIGCHI conference on Human factors in computing
systems (New York, NY, USA, 1990), ACM Press,
pp. 175–182.

[38] Mallik, A., Lin, B., Dinda, P., Memik, G., and

Dick, R. Process and user driven dynamic voltage
and frequency scaling. Tech. Rep. NWU-EECS-06-11,
Department of Electrical Engineering and Computer
Science, Northwestern University, August 2006.

[39] Mallik, A., Lin, B., Memik, G., Dinda, P., and

Dick, R. User-driven frequency scaling. IEEE
Computer Architecture Letters 5, 2 (2006).

[40] Microsoft. Remote desktop protocol (rdp) features
and performance. Tech. rep., 2000.

[41] Mutka, M. W., and Livny, M. The available
capacity of a privately owned workstation
environment. Performance Evaluation 12, 4 (July
1991), 269–284.

[42] Proctor, R., and Van Zandt, T. Human Factors
in Simple and Complex Systems. Allyn and Bacon,
1993.

[43] Reynolds, C. J. The sensing and measurement of
frustration with computers. Master’s thesis,
Massachusetts Institute of Technology Media
Laboratory, 2001.
http://www.media.mit.edu/∼carsonr/pdf/sm thesis.pdf.

[44] Richardson, T., Stafford-Fraser, Q., Wood, K.,

and Hopper, A. Virtual network computing. IEEE
Internet Computing 2, 1 (January/February 1998).

[45] Romano, P. Itu-t recommendation t.128 (application
sharing). Tech. rep., ITU, March 1997.

[46] Rossoff, S., and Dinda, P. Prospects for
speculative remote display. Tech. Rep.
NWU-EECS-06-08, Department of Electrical
Engineering and Computer Science, Northwestern
University, August 2006.

[47] Ruth, P., McGachey, P., Jiang, X., and Xu, D.

Viocluster: Virtualization for dynamic computational
domains. In Proceedings of the IEEE International
Conference on Cluster Computing (Cluster)
(September 2005).

[48] Satyanarayanan, M., Kozuch, M., Helfrich, C.,

and O’Hallaron, D. Towards seamless mobility on
pervasive hardware. Pervasive and Mobile Computing
1, 2 (June 2005), 157–189.

[49] Shoykhet, A., Lange, J., and Dinda, P. Virtuoso:
A system for virtual machine marketplaces. Tech.
Rep. NWU-CS-04-39, Department of Computer
Science, Northwestern University, July 2004.

[50] Sousa, J., Balan, R., Poladian, V., Garlan, D.,

and Satyanarayanan, M. Giving users the steering
wheel for guiding resource-adaptive systems. Tech.
Rep. CMU-CS-05-198, Department of Computer
Science, Carnegie Mellon University, December 2005.

[51] Stevens, W. TCP Slow Start, Congestion Avoidance,
Fast Retransmit and Fast Recovery Algorithms. In
Internet RFC 2001 (1997).

[52] Stricker, L. J. The true deceiver. Psychological
Bulletin, 68 (1967), 13–20.

[53] Sullivan, W. T., Werthimer, D., Bowyer, S.,

Cobb, J., Gedye, D., and Anderson, D. A new
major seti project based on project serendip data and
100,000 personal computers. In Proceedings of the
Fifth International Conference on Bioastronomy
(1997), C. Cosmovici, S. Bowyer, and D. Werthimer,
Eds., no. 161 in IAU Colloquim, Editrice Compositori,
Bologna, Italy.

[54] Sundararaj, A. Automatic, Run-time, and Dynamic
Adaptation of Distributed Applications Executing in
Virtual Environments. PhD thesis, Northwestern
University, December 2006. Technical Report
NWU-EECS-06-18, Department of Electrical
Engineering and Computer Science.

[55] Sundararaj, A., Gupta, A., and Dinda, P.

Increasing application performance in virtual
environments through run-time inference and
adaptation. In Proceedings of the 14th IEEE
International Symposium on High Performance
Distributed Computing (HPDC) (July 2005).

[56] Sundararaj, A., Sanghi, M., Lange, J., and

Dinda, P. An optimization problem in adaptive
virtual environments. In Proceedings of the Seventh
Workshop on Mathematical Performance Modeling
and Analysis (MAMA) (June 2005).

[57] Sundararaj, A., Sanghi, M., Lange, J., and

Dinda, P. Hardness of approximation and greedy
algorithms for the adaptation problem in virtual
environments. In Proceedings of the 3rd IEEE
International Conference on Autonomic Computing
(ICAC) (2006).

[58] Theocharous, G., Mannor, S., Shah, N., Gandhi,

P., Kveton, B., Siddiqi, S., and Yu, C.-H.

Machine learning for adaptive power management.
Intel Technology Journal 10, 4 (Nov. 2006).

[59] Wang, Z., and Crowcroft, J. Eliminating Periodic
Packet Losses in the 4.3-Tahoe BSD TCP Congestion
Control Algorithm. In ACM Computer
Communications Review (1992).

[60] Yan, L., Zhong, L., and Jha, N. K. User-perceived
Latency based Dynamic Voltage Scaling for
Interactive Applications. In Proceedings of
ACM/IEEE Design Automation Conference (2005).

12


